2568syllabus_f16

2568syllabus_f16

LoadingAdd to solve later

Sponsored Links

2568syllabus_f16


LoadingAdd to solve later

Sponsored Links

More from my site

  • Linear Combination of Eigenvectors is Not an EigenvectorLinear Combination of Eigenvectors is Not an Eigenvector Suppose that $\lambda$ and $\mu$ are two distinct eigenvalues of a square matrix $A$ and let $\mathbf{x}$ and $\mathbf{y}$ be eigenvectors corresponding to $\lambda$ and $\mu$, respectively. If $a$ and $b$ are nonzero numbers, then prove that $a \mathbf{x}+b\mathbf{y}$ is not an […]
  • The Possibilities For the Number of Solutions of Systems of Linear Equations that Have More Equations than UnknownsThe Possibilities For the Number of Solutions of Systems of Linear Equations that Have More Equations than Unknowns Determine all possibilities for the number of solutions of each of the system of linear equations described below. (a) A system of $5$ equations in $3$ unknowns and it has $x_1=0, x_2=-3, x_3=1$ as a solution. (b) A homogeneous system of $5$ equations in $4$ unknowns and the […]
  • A Prime Ideal in the Ring $\Z[\sqrt{10}]$A Prime Ideal in the Ring $\Z[\sqrt{10}]$ Consider the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}\] and its ideal \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}.\] Show that $p$ is a prime ideal of the ring $\Z[\sqrt{10}]$.   Definition of a prime ideal. An ideal $P$ of a ring $R$ is […]
  • Generators of the Augmentation Ideal in a Group RingGenerators of the Augmentation Ideal in a Group Ring Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by \[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\] where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring […]
  • Group Generated by Commutators of Two Normal Subgroups is a Normal SubgroupGroup Generated by Commutators of Two Normal Subgroups is a Normal Subgroup Let $G$ be a group and $H$ and $K$ be subgroups of $G$. For $h \in H$, and $k \in K$, we define the commutator $[h, k]:=hkh^{-1}k^{-1}$. Let $[H,K]$ be a subgroup of $G$ generated by all such commutators. Show that if $H$ and $K$ are normal subgroups of $G$, then the subgroup […]
  • Any Automorphism of the Field of Real Numbers Must be the Identity MapAny Automorphism of the Field of Real Numbers Must be the Identity Map Prove that any field automorphism of the field of real numbers $\R$ must be the identity automorphism.   Proof. We prove the problem by proving the following sequence of claims. Let $\phi:\R \to \R$ be an automorphism of the field of real numbers […]
  • Can We Reduce the Number of Vectors in a Spanning Set?Can We Reduce the Number of Vectors in a Spanning Set? Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^3$. Is it possible that $S_2=\{\mathbf{v}_1\}$ is a spanning set for $V$?   Solution. Yes, in general, $S_2$ can be a spanning set. As an […]
  • Find a Basis for a Subspace of the Vector Space of $2\times 2$ MatricesFind a Basis for a Subspace of the Vector Space of $2\times 2$ Matrices Let $V$ be the vector space of all $2\times 2$ matrices, and let the subset $S$ of $V$ be defined by $S=\{A_1, A_2, A_3, A_4\}$, where \begin{align*} A_1=\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, \quad A_2=\begin{bmatrix} 0 & -1 \\ 1 & 4 […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.