5 is Prime But 7 is Not Prime in the Ring $\Z[\sqrt{2}]$

Problems and solutions of ring theory in abstract algebra

Problem 224

In the ring
\[\Z[\sqrt{2}]=\{a+\sqrt{2}b \mid a, b \in \Z\},\] show that $5$ is a prime element but $7$ is not a prime element.

 
LoadingAdd to solve later

Sponsored Links


Hint.

An element $p$ in a ring $R$ is prime if $p$ is non zero, non unit element and whenever $p$ divide $ab$ for $a, b \in R$, then $p$ divides $a$ or $b$.

Equivalently, an element $p$ in the ring $R$ is prime if the principal ideal $(p)$ generated by $p$ is a nonzero prime ideal of $R$.

Proof.

5 is a prime element in the ring $\Z[\sqrt{2}]$.

We first show that $5$ is prime in the ring $\Z[\sqrt{2}]$.
Suppose that
\[5|(a+\sqrt{2}b)(c+\sqrt{2}d)\] for $a+\sqrt{2}b, c+\sqrt{2}d \in \Z[\sqrt{2}]$.
By taking the norm, we obtain
\[25| (a^2-2b^2)(c^2-2d^2)\] in $\Z$.
From this, we may assume that $5|a^2-2b^2$.
Now look at the following table.

\begin{array}{ |c|c|c|c| }
\hline
a, b & a^2, b^2 \pmod{5} & 2b^2 \pmod{5} \\
\hline
0 & 0 & 0 \\
1& 1 & 2 \\
2& 4 & 3 \\
3 & 4 & 3\\
4 & 1 & 2\\
\hline
\end{array}

From this table, we see that $a^2-2b^2=0 \pmod{5}$ if and only if $a, b$ are both divisible by $5$.
Therefore $5|a+\sqrt{2}b$, and $5$ is a prime element in $\Z[\sqrt{2}]$.

7 is not a prime element in the ring $\Z[\sqrt{2}]$.

Next, we show that $7$ is not a prime element in $\Z[\sqrt{2}]$.
To see this, note that we have
\[7=(3+\sqrt{2})(3-\sqrt{2})\] and $7$ does not divide $3+\sqrt{2}$ and $3-\sqrt{2}$.
Hence $7$ is not a prime element in the ring $\Z[\sqrt{2}]$.

Related Question.

Problem. Prove that the ring $\Z[\sqrt{2}]$ is a Euclidean Domain.

For a proof of this fact, see that post “The Ring $\Z[\sqrt{2}]$ is a Euclidean Domain“.


LoadingAdd to solve later

Sponsored Links

More from my site

  • The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral DomainThe Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain. Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a […]
  • Irreducible Polynomial Over the Ring of Polynomials Over Integral DomainIrreducible Polynomial Over the Ring of Polynomials Over Integral Domain Let $R$ be an integral domain and let $S=R[t]$ be the polynomial ring in $t$ over $R$. Let $n$ be a positive integer. Prove that the polynomial \[f(x)=x^n-t\] in the ring $S[x]$ is irreducible in $S[x]$.   Proof. Consider the principal ideal $(t)$ generated by $t$ […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]
  • Nilpotent Element a in a Ring and Unit Element $1-ab$Nilpotent Element a in a Ring and Unit Element $1-ab$ Let $R$ be a commutative ring with $1 \neq 0$. An element $a\in R$ is called nilpotent if $a^n=0$ for some positive integer $n$. Then prove that if $a$ is a nilpotent element of $R$, then $1-ab$ is a unit for all $b \in R$.   We give two proofs. Proof 1. Since $a$ […]
  • In a Principal Ideal Domain (PID), a Prime Ideal is a Maximal IdealIn a Principal Ideal Domain (PID), a Prime Ideal is a Maximal Ideal Let $R$ be a principal ideal domain (PID) and let $P$ be a nonzero prime ideal in $R$. Show that $P$ is a maximal ideal in $R$.   Definition A commutative ring $R$ is a principal ideal domain (PID) if $R$ is a domain and any ideal $I$ is generated by a single element […]
  • Equivalent Conditions For a Prime Ideal in a Commutative RingEquivalent Conditions For a Prime Ideal in a Commutative Ring Let $R$ be a commutative ring and let $P$ be an ideal of $R$. Prove that the following statements are equivalent: (a) The ideal $P$ is a prime ideal. (b) For any two ideals $I$ and $J$, if $IJ \subset P$ then we have either $I \subset P$ or $J \subset P$.   Proof. […]
  • If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field.If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field. Let $R$ be a commutative ring with $1$. Prove that if every proper ideal of $R$ is a prime ideal, then $R$ is a field.   Proof. As the zero ideal $(0)$ of $R$ is a proper ideal, it is a prime ideal by assumption. Hence $R=R/\{0\}$ is an integral […]
  • A Prime Ideal in the Ring $\Z[\sqrt{10}]$A Prime Ideal in the Ring $\Z[\sqrt{10}]$ Consider the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}\] and its ideal \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}.\] Show that $p$ is a prime ideal of the ring $\Z[\sqrt{10}]$.   Definition of a prime ideal. An ideal $P$ of a ring $R$ is […]

You may also like...

1 Response

  1. 07/08/2017

    […] For a proof of this problem, see the post “5 is prime but 7 is not prime in the ring $Z[sqrt{2}]$“. […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Ring theory
Prime Ideal Problems and Solution in Ring Theory in Mathematics
A Prime Ideal in the Ring $\Z[\sqrt{10}]$

Consider the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}\] and its ideal \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}.\]...

Close