A Group Homomorphism that Factors though Another Group

Group Theory Problems and Solutions in Mathematics

Problem 490

Let $G, H, K$ be groups. Let $f:G\to K$ be a group homomorphism and let $\pi:G\to H$ be a surjective group homomorphism such that the kernel of $\pi$ is included in the kernel of $f$: $\ker(\pi) \subset \ker(f)$.

Define a map $\bar{f}:H\to K$ as follows.
For each $h\in H$, there exists $g\in G$ such that $\pi(g)=h$ since $\pi:G\to H$ is surjective.
Define $\bar{f}:H\to K$ by $\bar{f}(h)=f(g)$.

(a) Prove that the map $\bar{f}:H\to K$ is well-defined.

(b) Prove that $\bar{f}:H\to K$ is a group homomorphism.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that the map $\bar{f}:H\to K$ is well-defined.

Let $h\in H$. Suppose that there are two elements $g, g’\in G$ such that $\pi(g)=h, \pi(g’)=h$.
Then we have
\begin{align*}
\pi(gg’^{-1})=\pi(g)\pi(g’)^{-1}=hh^{-1}=1
\end{align*}
since $\pi$ is a homomorphism.
Thus,
\[gg’^{-1}\in \ker(\pi) \subset \ker(f).\] It yields that $f(gg’^{-1})=1$.
It follows that
\begin{align*}
1=f(gg’^{-1})=f(g)f(g’)^{-1},
\end{align*}
and hence we have
\[f(g)=f(g’).\]

Therefore, the definition of $\bar{f}$ does not depend on the choice of elements $g\in G$ such that $\pi(g)=h$, hence it is well-defined.

(b) Prove that $\bar{f}:H\to K$ is a group homomorphism.

Our goal is to show that for any elements $h, h’\in H$, we have
\[\bar{f}(hh’)=\bar{f}(h)\bar{f}(h’).\]

Let $g, g’$ be elements in $G$ such that
\[\pi(g)=h \text{ and } \pi(g’)=h’.\] Then by definition of $\bar{f}$, we have
\[\bar{f}(h)=f(g) \text{ and } \bar{f}(h’)=f(g’) \tag{*}.\]

Since $\pi$ is a homomorphism, we have
\begin{align*}
hh’=\pi(g)\pi(g’)=\pi(gg’).
\end{align*}
By definition of $\bar{f}$, we have
\[\bar{f}(hh’)=f(gg’).\]

Since $f$ is a homomorphism, we obtain
\begin{align*}
\bar{f}(hh’)&=f(gg’)\\
&=f(g)f(g’)\\
&\stackrel{(*)}{=} \bar{f}(h)\bar{f}(h’).
\end{align*}
This proves that $\bar{f}$ is a group homomorphism.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$ Let $m$ and $n$ be positive integers such that $m \mid n$. (a) Prove that the map $\phi:\Zmod{n} \to \Zmod{m}$ sending $a+n\Z$ to $a+m\Z$ for any $a\in \Z$ is well-defined. (b) Prove that $\phi$ is a group homomorphism. (c) Prove that $\phi$ is surjective. (d) Determine […]
  • A Group Homomorphism is Injective if and only if MonicA Group Homomorphism is Injective if and only if Monic Let $f:G\to G'$ be a group homomorphism. We say that $f$ is monic whenever we have $fg_1=fg_2$, where $g_1:K\to G$ and $g_2:K \to G$ are group homomorphisms for some group $K$, we have $g_1=g_2$. Then prove that a group homomorphism $f: G \to G'$ is injective if and only if it is […]
  • Group Homomorphism, Preimage, and Product of GroupsGroup Homomorphism, Preimage, and Product of Groups Let $G, G'$ be groups and let $f:G \to G'$ be a group homomorphism. Put $N=\ker(f)$. Then show that we have \[f^{-1}(f(H))=HN.\]   Proof. $(\subset)$ Take an arbitrary element $g\in f^{-1}(f(H))$. Then we have $f(g)\in f(H)$. It follows that there exists $h\in H$ […]
  • Subgroup of Finite Index Contains a Normal Subgroup of Finite IndexSubgroup of Finite Index Contains a Normal Subgroup of Finite Index Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$.   Proof. The group $G$ acts on the set of left cosets $G/H$ by left multiplication. Hence […]
  • Group of $p$-Power Roots of 1 is Isomorphic to a Proper Quotient of ItselfGroup of $p$-Power Roots of 1 is Isomorphic to a Proper Quotient of Itself Let $p$ be a prime number. Let \[G=\{z\in \C \mid z^{p^n}=1\} \] be the group of $p$-power roots of $1$ in $\C$. Show that the map $\Psi:G\to G$ mapping $z$ to $z^p$ is a surjective homomorphism. Also deduce from this that $G$ is isomorphic to a proper quotient of $G$ […]
  • Surjective Group Homomorphism to $\Z$ and Direct Product of Abelian GroupsSurjective Group Homomorphism to $\Z$ and Direct Product of Abelian Groups Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism. Prove that we have an isomorphism of groups: \[G \cong \ker(f)\times \Z.\]   Proof. Since $f:G\to \Z$ is surjective, there exists an element $a\in G$ such […]
  • Group Homomorphisms From Group of Order 21 to Group of Order 49Group Homomorphisms From Group of Order 21 to Group of Order 49 Let $G$ be a finite group of order $21$ and let $K$ be a finite group of order $49$. Suppose that $G$ does not have a normal subgroup of order $3$. Then determine all group homomorphisms from $G$ to $K$.   Proof. Let $e$ be the identity element of the group […]
  • Abelian Normal subgroup, Quotient Group, and Automorphism GroupAbelian Normal subgroup, Quotient Group, and Automorphism Group Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$. Let $\Aut(N)$ be the group of automorphisms of $G$. Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime. Then prove that $N$ is contained in the center of […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
If a Finite Group Acts on a Set Freely and Transitively, then the Numbers of Elements are the Same

Let $G$ be a finite group and let $S$ be a non-empty set. Suppose that $G$ acts on $S$ freely...

Close