A Homomorphism from the Additive Group of Integers to Itself

Group Theory Problems and Solutions in Mathematics

Problem 163

Let $\Z$ be the additive group of integers. Let $f: \Z \to \Z$ be a group homomorphism.
Then show that there exists an integer $a$ such that
\[f(n)=an\] for any integer $n$.

 
LoadingAdd to solve later

Sponsored Links

Hint.

Let us first recall the definition of a group homomorphism.
A group homomorphism from a group $G$ to a group $H$ is a map $f:G \to H$ such that we have
\[f(gg’)=f(g)f(g’)\] for any elements $g, g\in G$.

If the group operations for groups $G$ and $H$ are written additively, then a group homomorphism $f:G\to H$ is a map such that
\[f(g+g’)=f(g)+f(g’)\] for any elements $g, g’ \in G$.

Here is a hint for the problem.
For any integer $n$, write it as
\[n=1+1+\cdots+1\] and compute $f(n)$ using the property of a homomorphism.

Proof.

Let us put $a:=f(1)\in \Z$. Then for any integer $n$, writing
\[n=1+1+\cdots+1,\] we have
\begin{align*}
f(n)&=f(1+1+\cdots+1)\\
&=f(1)+f(1)+\cdots+f(1) \quad \text{ since } f \text{ is a homomorphism}\\
&=a+a+\cdots+a\\
&=an.
\end{align*}
Thus we have $f(n)=an$ with $a=f(1)\in \Z$ as required.


LoadingAdd to solve later

Sponsored Links

More from my site

  • The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$ Let $F$ be a field and let \[H(F)=\left\{\, \begin{bmatrix} 1 & a & b \\ 0 &1 &c \\ 0 & 0 & 1 \end{bmatrix} \quad \middle| \quad \text{ for any} a,b,c\in F\, \right\}\] be the Heisenberg group over $F$. (The group operation of the Heisenberg group is matrix […]
  • Injective Group Homomorphism that does not have Inverse HomomorphismInjective Group Homomorphism that does not have Inverse Homomorphism Let $A=B=\Z$ be the additive group of integers. Define a map $\phi: A\to B$ by sending $n$ to $2n$ for any integer $n\in A$. (a) Prove that $\phi$ is a group homomorphism. (b) Prove that $\phi$ is injective. (c) Prove that there does not exist a group homomorphism $\psi:B […]
  • Abelian Groups and Surjective Group HomomorphismAbelian Groups and Surjective Group Homomorphism Let $G, G'$ be groups. Suppose that we have a surjective group homomorphism $f:G\to G'$. Show that if $G$ is an abelian group, then so is $G'$.   Definitions. Recall the relevant definitions. A group homomorphism $f:G\to G'$ is a map from $G$ to $G'$ […]
  • A Group is Abelian if and only if Squaring is a Group HomomorphismA Group is Abelian if and only if Squaring is a Group Homomorphism Let $G$ be a group and define a map $f:G\to G$ by $f(a)=a^2$ for each $a\in G$. Then prove that $G$ is an abelian group if and only if the map $f$ is a group homomorphism.   Proof. $(\implies)$ If $G$ is an abelian group, then $f$ is a homomorphism. Suppose that […]
  • A Group Homomorphism and an Abelian GroupA Group Homomorphism and an Abelian Group Let $G$ be a group. Define a map $f:G \to G$ by sending each element $g \in G$ to its inverse $g^{-1} \in G$. Show that $G$ is an abelian group if and only if the map $f: G\to G$ is a group homomorphism.   Proof. $(\implies)$ If $G$ is an abelian group, then $f$ […]
  • Abelian Normal subgroup, Quotient Group, and Automorphism GroupAbelian Normal subgroup, Quotient Group, and Automorphism Group Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$. Let $\Aut(N)$ be the group of automorphisms of $G$. Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime. Then prove that $N$ is contained in the center of […]
  • Surjective Group Homomorphism to $\Z$ and Direct Product of Abelian GroupsSurjective Group Homomorphism to $\Z$ and Direct Product of Abelian Groups Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism. Prove that we have an isomorphism of groups: \[G \cong \ker(f)\times \Z.\]   Proof. Since $f:G\to \Z$ is surjective, there exists an element $a\in G$ such […]
  • Normal Subgroups, Isomorphic Quotients, But Not IsomorphicNormal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Image of a Normal Subgroup Under a Surjective Homomorphism is a Normal Subgroup

Let $f: H \to G$ be a surjective group homomorphism from a group $H$ to a group $G$. Let $N$...

Close