A Matrix Commuting With a Diagonal Matrix with Distinct Entries is Diagonal

Problems and solutions in Linear Algebra

Problem 492

Let
\[D=\begin{bmatrix}
d_1 & 0 & \dots & 0 \\
0 &d_2 & \dots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \dots & d_n
\end{bmatrix}\] be a diagonal matrix with distinct diagonal entries: $d_i\neq d_j$ if $i\neq j$.
Let $A=(a_{ij})$ be an $n\times n$ matrix such that $A$ commutes with $D$, that is,
\[AD=DA.\] Then prove that $A$ is a diagonal matrix.

 
LoadingAdd to solve later
Sponsored Links

Proof.

We prove that the $(i,j)$-entry of $A$ is $a_{ij}=0$ for $i\neq j$.

We compare the $(i,j)$-entries of both sides of $AD=DA$.
Let $D=(d_{ij})$. That is, $d_{ii}=d_i$ and $d_{ij}=0$ if $i\neq j$.
The $(i,j)$-entry of $AD$ is
\begin{align*}
(AD)_{ij}=\sum_{k=1}^n a_{ik}d_{kj}=a_{ij}d_j.
\end{align*}

The $(i,j)$-entry of $DA$ is
\[(DA)_{ij}=\sum_{k=1}^n d_{ik}a_{kj}=d_ia_{ij}.\]

Hence we have
\[a_{ij}d_j=a_{ij}d_i.\] Or equivalently we have
\[a_{ij}(d_j-d_i)=0.\]

Since $d_i\neq d_j$, we have $d_j-d_i\neq 0$.
Thus, we must have $a_{ij}=0$ for $i\neq j$.

Hence $A=(a_{ij})$ is a diagonal matrix.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Basis For Subspace Consisting of Matrices Commute With a Given Diagonal MatrixBasis For Subspace Consisting of Matrices Commute With a Given Diagonal Matrix Let $V$ be the vector space of all $3\times 3$ real matrices. Let $A$ be the matrix given below and we define \[W=\{M\in V \mid AM=MA\}.\] That is, $W$ consists of matrices that commute with $A$. Then $W$ is a subspace of $V$. Determine which matrices are in the subspace $W$ […]
  • Symmetric Matrices and the Product of Two MatricesSymmetric Matrices and the Product of Two Matrices Let $A$ and $B$ be $n \times n$ real symmetric matrices. Prove the followings. (a) The product $AB$ is symmetric if and only if $AB=BA$. (b) If the product $AB$ is a diagonal matrix, then $AB=BA$.   Hint. A matrix $A$ is called symmetric if $A=A^{\trans}$. In […]
  • If matrix product $AB$ is a square, then is $BA$ a square matrix?If matrix product $AB$ is a square, then is $BA$ a square matrix? Let $A$ and $B$ are matrices such that the matrix product $AB$ is defined and $AB$ is a square matrix. Is it true that the matrix product $BA$ is also defined and $BA$ is a square matrix? If it is true, then prove it. If not, find a […]
  • If the Matrix Product $AB=0$, then is $BA=0$ as Well?If the Matrix Product $AB=0$, then is $BA=0$ as Well? Let $A$ and $B$ be $n\times n$ matrices. Suppose that the matrix product $AB=O$, where $O$ is the $n\times n$ zero matrix. Is it true that the matrix product with opposite order $BA$ is also the zero matrix? If so, give a proof. If not, give a […]
  • Linear Properties of Matrix Multiplication and the Null Space of a MatrixLinear Properties of Matrix Multiplication and the Null Space of a Matrix Let $A$ be an $m \times n$ matrix. Let $\calN(A)$ be the null space of $A$. Suppose that $\mathbf{u} \in \calN(A)$ and $\mathbf{v} \in \calN(A)$. Let $\mathbf{w}=3\mathbf{u}-5\mathbf{v}$. Then find $A\mathbf{w}$.   Hint. Recall that the null space of an […]
  • Simple Commutative Relation on MatricesSimple Commutative Relation on Matrices Let $A$ and $B$ are $n \times n$ matrices with real entries. Assume that $A+B$ is invertible. Then show that \[A(A+B)^{-1}B=B(A+B)^{-1}A.\] (University of California, Berkeley Qualifying Exam) Proof. Let $P=A+B$. Then $B=P-A$. Using these, we express the given […]
  • Solve a System by the Inverse Matrix and Compute $A^{2017}\mathbf{x}$Solve a System by the Inverse Matrix and Compute $A^{2017}\mathbf{x}$ Let $A$ be the coefficient matrix of the system of linear equations \begin{align*} -x_1-2x_2&=1\\ 2x_1+3x_2&=-1. \end{align*} (a) Solve the system by finding the inverse matrix $A^{-1}$. (b) Let $\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be the solution […]
  • Compute and Simplify the Matrix Expression Including Transpose and Inverse MatricesCompute and Simplify the Matrix Expression Including Transpose and Inverse Matrices Let $A, B, C$ be the following $3\times 3$ matrices. \[A=\begin{bmatrix} 1 & 2 & 3 \\ 4 &5 &6 \\ 7 & 8 & 9 \end{bmatrix}, B=\begin{bmatrix} 1 & 0 & 1 \\ 0 &3 &0 \\ 1 & 0 & 5 \end{bmatrix}, C=\begin{bmatrix} -1 & 0\ & 1 \\ 0 &5 &6 \\ 3 & 0 & […]

You may also like...

2 Responses

  1. Lalitha says:

    How did value “aijdj” derived from the summation (The (i,j)-entry of AD is – sentence). Please explain.

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Determine Whether There Exists a Nonsingular Matrix Satisfying $A^4=ABA^2+2A^3$

Determine whether there exists a nonsingular matrix $A$ if \[A^4=ABA^2+2A^3,\] where $B$ is the following matrix. \[B=\begin{bmatrix} -1 & 1...

Close