A Matrix is Invertible If and Only If It is Nonsingular

Linear algebra problems and solutions

Problem 26

In this problem, we will show that the concept of non-singularity of a matrix is equivalent to the concept of invertibility.
That is, we will prove that:

A matrix $A$ is nonsingular if and only if $A$ is invertible.

(a) Show that if $A$ is invertible, then $A$ is nonsingular.


(b) Let $A, B, C$ be $n\times n$ matrices such that $AB=C$.
Prove that if either $A$ or $B$ is singular, then so is $C$.


(c) Show that if $A$ is nonsingular, then $A$ is invertible.

FavoriteLoadingAdd to solve later

Sponsored Links

Definition (Nonsingular Matrix)

An $n \times n$ matrix $A$ is called nonsingular if the equation $A\mathbf{x}=\mathbf{0}$ has only the zero solution $\mathbf{x}=\mathbf{0}$.

For basic properties of a nonsingular matrix, see the problem Properties of nonsingular and singular matrices.
The result of this problem will be used in the proof below.

Proof.

(a) If $A$ is invertible, then $A$ is nonsingular

Suppose that $A$ is invertible. This means that we have the inverse matrix $A^{-1}$ of $A$.
Consider the equation $A\mathbf{x}=\mathbf{0}$. We show that this equation has only zero solution.

Multiplying it by $A^{-1}$ on the left, we obtain \begin{align*}
A^{-1}A\mathbf{x}&=A^{-1}\mathbf{0}\\
\Rightarrow \mathbf{x}=\mathbf{0}
\end{align*}
Hence $A$ is nonsingular.

(b) If either $A$ or $B$ is singular, then so is $C$

Suppose first that the matrix $B$ is singular.
Then there exists nonzero vector $\mathbf{b}\neq\mathbf{0}$ such that $B \mathbf{b}=\mathbf{0}$. Then we have $C\mathbf{b}=AB\mathbf{b}=A\mathbf{0}=\mathbf{0}$.

Since $\mathbf{b}$ is a nonzero vector, the matrix $C$ is singular.

Next, we assume that $B$ is nonsingular and $A$ is singular.
Since $A$ is singular, there exists nonzero vector $\mathbf{y_0}$ such that $A \mathbf{y}_0=\mathbf{0}$.

Then consider the equation $B\mathbf{x}=\mathbf{y}_0$ has a unique solution $\mathbf{x}_0$ by part (c) of Properties of nonsingular and singular matrices.
The vector $\mathbf{x}_0$ is nonzero because $\mathbf{y}_0$ is nonzero.

Then we have
\begin{align*}
C\mathbf{x}_0 =AB \mathbf{x}_0= A \mathbf{y}_0=\mathbf{0}.
\end{align*}
Therefore $C \mathbf{x}=\mathbf{0}$ has nonzero solution $\mathbf{x}_0$, hence $C$ is singular.

(c) If $A$ is nonsingular, then $A$ is invertible

Suppose that $A$ is nonsingular. Let $\mathbf{e}_i$ be the $n$-dimensional vector whose entries are all $0$ but $1$ in the $i$th place.
Then the equations $A\mathbf{x}=\mathbf{e}_i$ has a unique solution $\mathbf{x}_i$ for $i=1, \dots, n$.

Create a matrix $B$ whose $i$-th column vector is $\mathbf{x}_i$, namely $B=[\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n]$.
Then we have $AB=[\mathbf{e}_1\mathbf{e}_2\dots \mathbf{e}_n]=I_n$.

Hence $B$ is the right inverse of $A$.
Note that the identity matrix $I_n$ is nonsingular. Thus by part (c) of Properties of nonsingular and singular matrices, the matrix $B$ must be nonsingular as well.

We repeat the above argument using $B$ instead of $A$. Then there exist a matrix $C$ such that $BC=I_n$. We claim that $C=A$.
To see this, multiply $AB=I_n$ by $C$ on the right, we get $ABC=C$.

Since $BC=I_n$, we get $A=C$.

In summary, we obtained $AB=I_n$ and $BA=I_n$. Thus $A$ is invertible with the inverse $B$.


FavoriteLoadingAdd to solve later

Sponsored Links

More from my site

  • Properties of Nonsingular and Singular MatricesProperties of Nonsingular and Singular Matrices An $n \times n$ matrix $A$ is called nonsingular if the only solution of the equation $A \mathbf{x}=\mathbf{0}$ is the zero vector $\mathbf{x}=\mathbf{0}$. Otherwise $A$ is called singular. (a) Show that if $A$ and $B$ are $n\times n$ nonsingular matrices, then the product $AB$ is […]
  • Nilpotent Matrices and Non-Singularity of Such MatricesNilpotent Matrices and Non-Singularity of Such Matrices Let $A$ be an $n \times n$ nilpotent matrix, that is, $A^m=O$ for some positive integer $m$, where $O$ is the $n \times n$ zero matrix. Prove that $A$ is a singular matrix and also prove that $I-A, I+A$ are both nonsingular matrices, where $I$ is the $n\times n$ identity […]
  • Compute Determinant of a Matrix Using Linearly Independent VectorsCompute Determinant of a Matrix Using Linearly Independent Vectors Let $A$ be a $3 \times 3$ matrix. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have \[A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 […]
  • Find All the Values of $x$ so that a Given $3\times 3$ Matrix is SingularFind All the Values of $x$ so that a Given $3\times 3$ Matrix is Singular Find all the values of $x$ so that the following matrix $A$ is a singular matrix. \[A=\begin{bmatrix} x & x^2 & 1 \\ 2 &3 &1 \\ 0 & -1 & 1 \end{bmatrix}.\]   Hint. Use the fact that a matrix is singular if and only if its determinant is […]
  • Find All Values of $x$ so that a Matrix is SingularFind All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.   Hint. Use the fact that a matrix is singular if and only […]
  • Problems and Solutions About Similar MatricesProblems and Solutions About Similar Matrices Let $A, B$, and $C$ be $n \times n$ matrices and $I$ be the $n\times n$ identity matrix. Prove the following statements. (a) If $A$ is similar to $B$, then $B$ is similar to $A$. (b) $A$ is similar to itself. (c) If $A$ is similar to $B$ and $B$ […]
  • Find Values of $h$ so that the Given Vectors are Linearly IndependentFind Values of $h$ so that the Given Vectors are Linearly Independent Find the value(s) of $h$ for which the following set of vectors \[\left \{ \mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2\begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2h \\ 3h+1 […]
  • Find the Inverse Matrix of a $3\times 3$ Matrix if ExistsFind the Inverse Matrix of a $3\times 3$ Matrix if Exists Find the inverse matrix of \[A=\begin{bmatrix} 1 & 1 & 2 \\ 0 &0 &1 \\ 1 & 0 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (The Ohio State University, Linear Algebra Midterm Exam […]

You may also like...

1 Response

  1. 09/13/2017

    […] For the proof of the fact we used in the proof of (b)-2 that a matrix is nonsingular if and only if it is invertible, see the post↴ A Matrix is Invertible If and Only If It is Nonsingular […]

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Linear algebra problems and solutions
Properties of Nonsingular and Singular Matrices

An $n \times n$ matrix $A$ is called nonsingular if the only solution of the equation $A \mathbf{x}=\mathbf{0}$ is the...

Close