# one-line proof of the infinitude of primes

by Yu · Published · Updated

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

Add to solve later

Sponsored Links

### More from my site

- A One-Line Proof that there are Infinitely Many Prime Numbers Prove that there are infinitely many prime numbers in ONE-LINE. Background There are several proofs of the fact that there are infinitely many prime numbers. Proofs by Euclid and Euler are very popular. In this post, I would like to introduce an elegant one-line […]
- Fundamental Theorem of Finitely Generated Abelian Groups and its application In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem. Problem. Let $G$ be a finite abelian group of order $n$. If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]
- If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field. Let $R$ be a commutative ring with $1$. Prove that if every proper ideal of $R$ is a prime ideal, then $R$ is a field. Proof. As the zero ideal $(0)$ of $R$ is a proper ideal, it is a prime ideal by assumption. Hence $R=R/\{0\}$ is an integral […]
- Polynomial Ring with Integer Coefficients and the Prime Ideal $I=\{f(x) \in \Z[x] \mid f(-2)=0\}$ Let $\Z[x]$ be the ring of polynomials with integer coefficients. Prove that \[I=\{f(x)\in \Z[x] \mid f(-2)=0\}\] is a prime ideal of $\Z[x]$. Is $I$ a maximal ideal of $\Z[x]$? Proof. Define a map $\phi: \Z[x] \to \Z$ defined by \[\phi \left( f(x) […]
- The Product Distinct Sylow $p$-Subgroups Can Never be a Subgroup Let $G$ a finite group and let $H$ and $K$ be two distinct Sylow $p$-group, where $p$ is a prime number dividing the order $|G|$ of $G$. Prove that the product $HK$ can never be a subgroup of the group $G$. Hint. Use the following fact. If $H$ and $K$ […]
- The Existence of an Element in an Abelian Group of Order the Least Common Multiple of Two Elements Let $G$ be an abelian group. Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively. Prove that there exists an element $c$ in $G$ such that the order of $c$ is the least common multiple of $m$ and $n$. Also determine whether the statement is true if $G$ is a […]
- A Rational Root of a Monic Polynomial with Integer Coefficients is an Integer Suppose that $\alpha$ is a rational root of a monic polynomial $f(x)$ in $\Z[x]$. Prove that $\alpha$ is an integer. Proof. Suppose that $\alpha=\frac{p}{q}$ is a rational number in lowest terms, that is, $p$ and $q$ are relatively prime […]
- Determine the Quotient Ring $\Z[\sqrt{10}]/(2, \sqrt{10})$ Let \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}\] be an ideal of the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}.\] Then determine the quotient ring $\Z[\sqrt{10}]/P$. Is $P$ a prime ideal? Is $P$ a maximal ideal? Solution. We […]