A Ring Has Infinitely Many Nilpotent Elements if $ab=1$ and $ba \neq 1$

Problems and solutions of ring theory in abstract algebra

Problem 543

Let $R$ be a ring with $1$.
Suppose that $a, b$ are elements in $R$ such that
\[ab=1 \text{ and } ba\neq 1.\]

(a) Prove that $1-ba$ is idempotent.

(b) Prove that $b^n(1-ba)$ is nilpotent for each positive integer $n$.

(c) Prove that the ring $R$ has infinitely many nilpotent elements.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that $1-ba$ is idempotent.

We compute
\begin{align*}
(1-ba)^2&=(1-ba)(1-ba)=1-ba-ba+b\underbrace{ab}_{=1}a\\
&=1-ba-ba+ba=1-ba.
\end{align*}
Thus, we have $(1-ba)^2=1-ba$, and hence $1-ba$ is idempotent.

(b) Prove that $b^n(1-ba)$ is nilpotent for each positive integer $n$.

As a lemma, we show that $(1-ba)b=0$.
To see this, we calculate
\begin{align*}
(1-ba)b=b-b\underbrace{ab}_{=1}=b-b=0.
\end{align*}


Now we compute
\begin{align*}
b^n(1-ba)\cdot b^n(1-ba)&=b^n\underbrace{(1-ba)b}_{=0 \text{ by lemma}}b^{n-1}(1-ba)=0.
\end{align*}
This proves that $b^n(1-ba)$ is nilpotent.

(c) Prove that the ring $R$ has infinitely many nilpotent elements.

In part (a), we showed that the element $b^n(1-ba)$ is a nilpotent element of $R$ for each positive integer $n$.
We claim that $b^n(1-ba)\neq b^m(1-ba)$ for each pair of distinct integers $m, n$.
Without loss of generality, we may assume that $m > n$.


We state simple facts which are needed below.
We have
\begin{align*}
a^nb^n&=1\\
a^nb^m&=b^{m-n}.
\end{align*}
Note that $a^nb^n$ and $a^nb^m$ look like
\[aa\cdots a\cdot bb\cdots b.\] Then we use the relation $ab=1$ from the middle successively, and we obtain the right-hand sides.


Now we prove that $b^n(1-ba)\neq b^m(1-ba)$ for each pair of distinct integers $m, n$.
Assume on the contrary $b^n(1-ba)= b^m(1-ba)$ for $m > n$.
Then we multiply by $a^n$ on the left and get
\begin{align*}
a^n b^n(1-ba)= a^n b^m(1-ba).
\end{align*}

Using the facts stated above, we obtain
\[1-ba=b^{m-n}(1-ba).\] Note that the left-hand side is a nonzero idempotent element by part (a).
On the other hand, the right-hand side is nilpotent by part (b).
Since a nonzero idempotent element can never be nilpotent, this is a contradiction.

Therefore, $b^n(1-ba)\neq b^m(1-ba)$ for each pair of distinct integers $m, n$.
Hence there are infinitely many nilpotent elements in $R$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Boolean Rings Do Not Have Nonzero Nilpotent ElementsBoolean Rings Do Not Have Nonzero Nilpotent Elements Let $R$ be a commutative ring with $1$ such that every element $x$ in $R$ is idempotent, that is, $x^2=x$. (Such a ring is called a Boolean ring.) (a) Prove that $x^n=x$ for any positive integer $n$. (b) Prove that $R$ does not have a nonzero nilpotent […]
  • Is the Set of Nilpotent Element an Ideal?Is the Set of Nilpotent Element an Ideal? Is it true that a set of nilpotent elements in a ring $R$ is an ideal of $R$? If so, prove it. Otherwise give a counterexample.   Proof. We give a counterexample. Let $R$ be the noncommutative ring of $2\times 2$ matrices with real […]
  • Nilpotent Element a in a Ring and Unit Element $1-ab$Nilpotent Element a in a Ring and Unit Element $1-ab$ Let $R$ be a commutative ring with $1 \neq 0$. An element $a\in R$ is called nilpotent if $a^n=0$ for some positive integer $n$. Then prove that if $a$ is a nilpotent element of $R$, then $1-ab$ is a unit for all $b \in R$.   We give two proofs. Proof 1. Since $a$ […]
  • If the Localization is Noetherian for All Prime Ideals, Is the Ring Noetherian?If the Localization is Noetherian for All Prime Ideals, Is the Ring Noetherian? Let $R$ be a commutative ring with $1$. Suppose that the localization $R_{\mathfrak{p}}$ is a Noetherian ring for every prime ideal $\mathfrak{p}$ of $R$. Is it true that $A$ is also a Noetherian ring?   Proof. The answer is no. We give a counterexample. Let […]
  • Ring of Gaussian Integers and Determine its Unit ElementsRing of Gaussian Integers and Determine its Unit Elements Denote by $i$ the square root of $-1$. Let \[R=\Z[i]=\{a+ib \mid a, b \in \Z \}\] be the ring of Gaussian integers. We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to \[N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.\] Here $\bar{\alpha}$ is the complex conjugate of […]
  • Equivalent Conditions For a Prime Ideal in a Commutative RingEquivalent Conditions For a Prime Ideal in a Commutative Ring Let $R$ be a commutative ring and let $P$ be an ideal of $R$. Prove that the following statements are equivalent: (a) The ideal $P$ is a prime ideal. (b) For any two ideals $I$ and $J$, if $IJ \subset P$ then we have either $I \subset P$ or $J \subset P$.   Proof. […]
  • The Ring $\Z[\sqrt{2}]$ is a Euclidean DomainThe Ring $\Z[\sqrt{2}]$ is a Euclidean Domain Prove that the ring of integers \[\Z[\sqrt{2}]=\{a+b\sqrt{2} \mid a, b \in \Z\}\] of the field $\Q(\sqrt{2})$ is a Euclidean Domain.   Proof. First of all, it is clear that $\Z[\sqrt{2}]$ is an integral domain since it is contained in $\R$. We use the […]
  • Is the Given Subset of The Ring of Integer Matrices an Ideal?Is the Given Subset of The Ring of Integer Matrices an Ideal? Let $R$ be the ring of all $2\times 2$ matrices with integer coefficients: \[R=\left\{\, \begin{bmatrix} a & b\\ c& d \end{bmatrix} \quad \middle| \quad a, b, c, d\in \Z \,\right\}.\] Let $S$ be the subset of $R$ given by \[S=\left\{\, \begin{bmatrix} s & […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Ring theory
Problems and solutions of ring theory in abstract algebra
If $ab=1$ in a Ring, then $ba=1$ when $a$ or $b$ is Not a Zero Divisor

Let $R$ be a ring with $1\neq 0$. Let $a, b\in R$ such that $ab=1$. (a) Prove that if $a$...

Close