A Ring is Commutative if Whenever $ab=ca$, then $b=c$

Problems and solutions of ring theory in abstract algebra

Problem 615

Let $R$ be a ring and assume that whenever $ab=ca$ for some elements $a, b, c\in R$, we have $b=c$.

Then prove that $R$ is a commutative ring.

 
LoadingAdd to solve later

Sponsored Links

Proof.

Let $x, y$ be arbitrary elements in $R$. We want to show that $xy=yx$.
Consider the identity
\[y(xy)=(yx)y.\] This can be written as $ab=ca$ if we put $a=y, b=xy, c=yx$.

It follows from the assumption that we have $b=c$.
Equivalently, we have $xy=yx$.

As this is true for any $x, y\in R$, we conclude that $R$ is a commutative ring.


LoadingAdd to solve later

Sponsored Links

More from my site

  • If the Quotient Ring is a Field, then the Ideal is MaximalIf the Quotient Ring is a Field, then the Ideal is Maximal Let $R$ be a ring with unit $1\neq 0$. Prove that if $M$ is an ideal of $R$ such that $R/M$ is a field, then $M$ is a maximal ideal of $R$. (Do not assume that the ring $R$ is commutative.)   Proof. Let $I$ be an ideal of $R$ such that \[M \subset I \subset […]
  • Is the Set of Nilpotent Element an Ideal?Is the Set of Nilpotent Element an Ideal? Is it true that a set of nilpotent elements in a ring $R$ is an ideal of $R$? If so, prove it. Otherwise give a counterexample.   Proof. We give a counterexample. Let $R$ be the noncommutative ring of $2\times 2$ matrices with real […]
  • Ideal Quotient (Colon Ideal) is an IdealIdeal Quotient (Colon Ideal) is an Ideal Let $R$ be a commutative ring. Let $S$ be a subset of $R$ and let $I$ be an ideal of $I$. We define the subset \[(I:S):=\{ a \in R \mid aS\subset I\}.\] Prove that $(I:S)$ is an ideal of $R$. This ideal is called the ideal quotient, or colon ideal.   Proof. Let $a, […]
  • If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field.If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field. Let $R$ be a commutative ring with $1$. Prove that if every proper ideal of $R$ is a prime ideal, then $R$ is a field.   Proof. As the zero ideal $(0)$ of $R$ is a proper ideal, it is a prime ideal by assumption. Hence $R=R/\{0\}$ is an integral […]
  • Equivalent Conditions For a Prime Ideal in a Commutative RingEquivalent Conditions For a Prime Ideal in a Commutative Ring Let $R$ be a commutative ring and let $P$ be an ideal of $R$. Prove that the following statements are equivalent: (a) The ideal $P$ is a prime ideal. (b) For any two ideals $I$ and $J$, if $IJ \subset P$ then we have either $I \subset P$ or $J \subset P$.   Proof. […]
  • Prime Ideal is Irreducible in a Commutative RingPrime Ideal is Irreducible in a Commutative Ring Let $R$ be a commutative ring. An ideal $I$ of $R$ is said to be irreducible if it cannot be written as an intersection of two ideals of $R$ which are strictly larger than $I$. Prove that if $\frakp$ is a prime ideal of the commutative ring $R$, then $\frakp$ is […]
  • Nilpotent Element a in a Ring and Unit Element $1-ab$Nilpotent Element a in a Ring and Unit Element $1-ab$ Let $R$ be a commutative ring with $1 \neq 0$. An element $a\in R$ is called nilpotent if $a^n=0$ for some positive integer $n$. Then prove that if $a$ is a nilpotent element of $R$, then $1-ab$ is a unit for all $b \in R$.   We give two proofs. Proof 1. Since $a$ […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Ring theory
Prime Ideal Problems and Solution in Ring Theory in Mathematics
If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field.

Let $R$ be a commutative ring with $1$. Prove that if every proper ideal of $R$ is a prime ideal,...

Close