A Singular Matrix and Matrix Equations $A\mathbf{x}=\mathbf{e}_i$ With Unit Vectors

Problems and solutions in Linear Algebra

Problem 561

Let $A$ be a singular $n\times n$ matrix.
Let
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0 \\
\vdots \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1 \\
\vdots \\
0
\end{bmatrix}, \dots, \mathbf{e}_n=\begin{bmatrix}
0 \\
0 \\
\vdots \\
1
\end{bmatrix}\] be unit vectors in $\R^n$.

Prove that at least one of the following matrix equations
\[A\mathbf{x}=\mathbf{e}_i\] for $i=1,2,\dots, n$, must have no solution $\mathbf{x}\in \R^n$.

 
LoadingAdd to solve later

Sponsored Links

Proof.

Assume on the contrary that each matrix equation $A\mathbf{x}=\mathbf{e}_i$ has a solution.
Let $\mathbf{b}_i\in \R^n$ be a solution of $A\mathbf{x}=\mathbf{e}_i$ for each $i=1, \dots, n$.
That is, we have
\[A\mathbf{b}_i=\mathbf{e}_i.\] Let $B=[\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n]$ be the $n\times n$ matrix whose $i$-th column vector is $\mathbf{b}_i$.


Then we have
\begin{align*}
AB&=A[\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n]\\[6pt] &=[A\mathbf{b}_1, A\mathbf{b}_2, \dots, A\mathbf{b}_n]\\[6pt] &=[\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n]=I,
\end{align*}
where $I$ is the $n\times n$ identity matrix.


Since $I$ is the nonsingular matrix, the matrix $A$ must also be nonsingular.
However this contradicts the assumption that $A$ is singular.
It follows that at least one of the matrix equations $A\mathbf{x}=\mathbf{e}_i$ has no solution.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
The Matrix $[A_1, \dots, A_{n-1}, A\mathbf{b}]$ is Always Singular, Where $A=[A_1,\dots, A_{n-1}]$ and $\mathbf{b}\in \R^{n-1}$.

Let $A$ be an $n\times (n-1)$ matrix and let $\mathbf{b}$ be an $(n-1)$-dimensional vector. Then the product $A\mathbf{b}$ is an...

Close