All the Eigenvectors of a Matrix Are Eigenvectors of Another Matrix

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 51

Let $A$ and $B$ be an $n \times n$ matrices.
Suppose that all the eigenvalues of $A$ are distinct and the matrices $A$ and $B$ commute, that is $AB=BA$.

Then prove that each eigenvector of $A$ is an eigenvector of $B$.

(It could be that each eigenvector is an eigenvector for distinct eigenvalues.)

LoadingAdd to solve later

Sponsored Links


Hint.

Each eigenspace for $A$ is one dimensional.

Proof.

Since $A$ has $n$ distinct eigenvalues, the characteristic polynomial for $A$ factors into the product of degree $1$ polynomials.

Thus, the algebraic multiplicity of each eigenvalue is, $1$ and hence the geometric multiplicity is also $1$.
(The geometric multiplicity is always less than or equal to the algebraic multiplicity and greater than 0 by definition.)

Thus the dimension of each eigenspace, which is the geometric multiplicity, is $1$.


Let $\lambda$ be an eigenvalue of the matrix $A$ and let $\mathbf{x}$ be the eigenvector corresponding to $\lambda$.
Since the eigenspace $E_{\lambda}$ for $\lambda$ is one dimensional and $\mathbf{x}\in E_{\lambda}$ is a nonzero vector in it, the vector $\mathbf{x}$ is a basis.
That is, we have $E_{\lambda}=\{t\mathbf{x} \mid t\in \C \}$.


Now we multiply $A\mathbf{x}=\lambda \mathbf{x}$ by the matrix $B$ on the left and obtain
\begin{align*}
BA\mathbf{x}&=\lambda B\mathbf{x}\\
\iff \,\,\,\, AB\mathbf{x}&=\lambda B\mathbf{x} \text{ since } AB=BA.
\end{align*}


This implies that $B\mathbf{x} \in E_{\lambda}=\{t\mathbf{x} \mid t\in \C \}$. Therefore there exists $t\in \C$ such that $B \mathbf{x}= t\mathbf{x}$.

Hence the vector $\mathbf{x}$ is also an eigenvector corresponding to the eigenvalue $t$ of the matrix $B$.
This completes the proof.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Nagoya University Linear Algebra Exam Problems and Solutions
Find the Limit of a Matrix

Let \[A=\begin{bmatrix} \frac{1}{7} & \frac{3}{7} & \frac{3}{7} \\ \frac{3}{7} &\frac{1}{7} &\frac{3}{7} \\ \frac{3}{7} & \frac{3}{7} & \frac{1}{7} \end{bmatrix}\] be $3...

Close