Any Vector is a Linear Combination of Basis Vectors Uniquely

Linear algebra problems and solutions

Problem 151

Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that any vector $\mathbf{v}\in V$ can be written uniquely as
\[\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3,\] where $c_1, c_2, c_3$ are scalars.
 
LoadingAdd to solve later

Sponsored Links

Proof.

Since $B$ is a basis for $V$, any vector $\mathbf{v} \in V$ is a linear combination of basis vectors in $B$.
Thus, there exist scalars $c_1, c_2, c_3 \in K$ such that
\[\mathbf{v}=c_1\mathbf{v}_+c_2\mathbf{v}_2+c_3\mathbf{v}_3.\] Hence such an expression as a linear combination of basis vectors exists.


We now show that such representation of $\mathbf{v}$ is unique.
Suppose we have another representaion
\[\mathbf{v}=d_1\mathbf{v}_+d_2\mathbf{v}_2+d_3\mathbf{v}_3\] for some scalars $d_1, d_2, d_3 \in K$.

Then we have
\begin{align*}
c_1\mathbf{v}_+c_2\mathbf{v}_2+c_3\mathbf{v}_3=\mathbf{v}=d_1\mathbf{v}_+d_2\mathbf{v}_2+d_3\mathbf{v}_3.
\end{align*}
Thus, we obtain
\[(c_1-d_1)\mathbf{v}_+(c_2-d_2)\mathbf{v}_2+(c_3-d_3)\mathbf{v}_3=\mathbf{0}.\] Since $B$ is a basis, the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.


Hence the coefficients of the above linear combination must be all zero, and thus we obtain
\[c_1-d_1=0, \quad c_2-d_2=0, \quad c_3-d_3=0,\] equivalently, we have
\[c_1=d_1, \quad c_2=d_2, \quad c_3=d_3.\] Therefore two representations of the vector $\mathbf{v}$ are the same, and thus the representation of $\mathbf{v}$ as a linear combination of basis vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is unique.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
A Basis for the Vector Space of Polynomials of Degree Two or Less and Coordinate Vectors

Show that the set \[S=\{1, 1-x, 3+4x+x^2\}\] is a basis of the vector space $P_2$ of all polynomials of degree...

Close