Author: Yu

A Group Homomorphism is Injective if and only if Monic

Problem 243

Let $f:G\to G’$ be a group homomorphism. We say that $f$ is monic whenever we have $fg_1=fg_2$, where $g_1:K\to G$ and $g_2:K \to G$ are group homomorphisms for some group $K$, we have $g_1=g_2$.

Then prove that a group homomorphism $f: G \to G’$ is injective if and only if it is monic.

Read solution

LoadingAdd to solve later

Welcome to Problems in Mathematics

Welcome to my website.

I post problems and its solutions/proofs in mathematics almost every day.

Most of the problems are undergraduate level mathematics.

Here are several topics I cover on this website.

2017 is a prime number. Do you want to know more about 2017?

Check out the post Mathematics about the number 2017


Read More

LoadingAdd to solve later

No Finite Abelian Group is Divisible

Problem 240

A nontrivial abelian group $A$ is called divisible if for each element $a\in A$ and each nonzero integer $k$, there is an element $x \in A$ such that $x^k=a$.
(Here the group operation of $A$ is written multiplicatively. In additive notation, the equation is written as $kx=a$.) That is, $A$ is divisible if each element has a $k$-th root in $A$.

(a) Prove that the additive group of rational numbers $\Q$ is divisible.

(b) Prove that no finite abelian group is divisible.

Read solution

LoadingAdd to solve later

Orthogonality of Eigenvectors of a Symmetric Matrix Corresponding to Distinct Eigenvalues

Problem 235

Suppose that a real symmetric matrix $A$ has two distinct eigenvalues $\alpha$ and $\beta$.
Show that any eigenvector corresponding to $\alpha$ is orthogonal to any eigenvector corresponding to $\beta$.

(Nagoya University, Linear Algebra Final Exam Problem)
Read solution

LoadingAdd to solve later

Explicit Field Isomorphism of Finite Fields

Problem 233

(a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic.

(b) Show that the polynomials $x^3-x+1$ and $x^3-x-1$ are both irreducible polynomials over the finite field $\F_3$.

(c) Exhibit an explicit isomorphism between the splitting fields of $x^3-x+1$ and $x^3-x-1$ over $\F_3$.

Read solution

LoadingAdd to solve later