Author: Yu

Fundamental Theorem of Finitely Generated Abelian Groups and its application

Problem 420

In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.

Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic to the cyclic group $Z_n=\Zmod{n}$ of order $n$.

 

Read solution

FavoriteLoadingAdd to solve later

Eigenvalues of Orthogonal Matrices Have Length 1. Every $3\times 3$ Orthogonal Matrix Has 1 as an Eigenvalue

Problem 419

(a) Let $A$ be a real orthogonal $n\times n$ matrix. Prove that the length (magnitude) of each eigenvalue of $A$ is $1$


(b) Let $A$ be a real orthogonal $3\times 3$ matrix and suppose that the determinant of $A$ is $1$. Then prove that $A$ has $1$ as an eigenvalue.

 

Read solution

FavoriteLoadingAdd to solve later

Linearly Dependent Module Elements / Module Homomorphism and Linearly Independency

Problem 415

(a) Let $R$ be a commutative ring. If we regard $R$ as a left $R$-module, then prove that any two distinct elements of the module $R$ are linearly dependent.

(b) Let $f: M\to M’$ be a left $R$-module homomorphism. Let $\{x_1, \dots, x_n\}$ be a subset in $M$. Prove that if the set $\{f(x_1), \dots, f(x_n)\}$ is linearly independent, then the set $\{x_1, \dots, x_n\}$ is also linearly independent.
 

Read solution

FavoriteLoadingAdd to solve later

Annihilator of a Submodule is a 2-Sided Ideal of a Ring

Problem 410

Let $R$ be a ring with $1$ and let $M$ be a left $R$-module.
Let $S$ be a subset of $M$. The annihilator of $S$ in $R$ is the subset of the ring $R$ defined to be
\[\Ann_R(S)=\{ r\in R\mid rx=0 \text{ for all } x\in S\}.\] (If $rx=0, r\in R, x\in S$, then we say $r$ annihilates $x$.)

Suppose that $N$ is a submodule of $M$. Then prove that the annihilator
\[\Ann_R(N)=\{ r\in R\mid rn=0 \text{ for all } n\in N\}\] of $M$ in $R$ is a $2$-sided ideal of $R$.

 

Read solution

FavoriteLoadingAdd to solve later

Torsion Submodule, Integral Domain, and Zero Divisors

Problem 409

Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$.
The set of torsion elements is denoted
\[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\]

(a) Prove that if $R$ is an integral domain, then $\Tor(M)$ is a submodule of $M$.
(Remark: an integral domain is a commutative ring by definition.) In this case the submodule $\Tor(M)$ is called torsion submodule of $M$.

(b) Find an example of a ring $R$ and an $R$-module $M$ such that $\Tor(M)$ is not a submodule.

(c) If $R$ has nonzero zero divisors, then show that every nonzero $R$-module has nonzero torsion element.

 

Read solution

FavoriteLoadingAdd to solve later

Basic Exercise Problems in Module Theory

Problem 408

Let $R$ be a ring with $1$ and $M$ be a left $R$-module.

(a) Prove that $0_Rm=0_M$ for all $m \in M$.

Here $0_R$ is the zero element in the ring $R$ and $0_M$ is the zero element in the module $M$, that is, the identity element of the additive group $M$.
To simplify the notations, we ignore the subscripts and simply write
\[0m=0.\] You must be able to and must judge which zero elements are used from the context.

(b) Prove that $r0=0$ for all $s\in R$. Here both zeros are $0_M$.

(c) Prove that $(-1)m=-m$ for all $m \in M$.

(d) Assume that $rm=0$ for some $r\in R$ and some nonzero element $m\in M$. Prove that $r$ does not have a left inverse.

 

Read solution

FavoriteLoadingAdd to solve later

A Relation of Nonzero Row Vectors and Column Vectors

Problem 406

Let $A$ be an $n\times n$ matrix. Suppose that $\mathbf{y}$ is a nonzero row vector such that
\[\mathbf{y}A=\mathbf{y}.\] (Here a row vector means a $1\times n$ matrix.)
Prove that there is a nonzero column vector $\mathbf{x}$ such that
\[A\mathbf{x}=\mathbf{x}.\] (Here a column vector means an $n \times 1$ matrix.)

 

Read solution

FavoriteLoadingAdd to solve later

Sequence Converges to the Largest Eigenvalue of a Matrix

Problem 403

Let $A$ be an $n\times n$ matrix. Suppose that $A$ has real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ with corresponding eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.
Furthermore, suppose that
\[|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|.\] Let
\[\mathbf{x}_0=c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_n\mathbf{u}_n\] for some real numbers $c_1, c_2, \dots, c_n$ and $c_1\neq 0$.

Define
\[\mathbf{x}_{k+1}=A\mathbf{x}_k \text{ for } k=0, 1, 2,\dots\] and let
\[\beta_k=\frac{\mathbf{x}_k\cdot \mathbf{x}_{k+1}}{\mathbf{x}_k \cdot \mathbf{x}_k}=\frac{\mathbf{x}_k^{\trans} \mathbf{x}_{k+1}}{\mathbf{x}_k^{\trans} \mathbf{x}_k}.\]

Prove that
\[\lim_{k\to \infty} \beta_k=\lambda_1.\]

 

Read solution

FavoriteLoadingAdd to solve later