Let $n$ be a positive integer. Let $D_{2n}$ be the dihedral group of order $2n$. Using the generators and the relations, the dihedral group $D_{2n}$ is given by
\[D_{2n}=\langle r,s \mid r^n=s^2=1, sr=r^{-1}s\rangle.\]
Put $\theta=2 \pi/n$.

(a) Prove that the matrix $\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix}$ is the matrix representation of the linear transformation $T$ which rotates the $x$-$y$ plane about the origin in a counterclockwise direction by $\theta$ radians.
(b) Let $\GL_2(\R)$ be the group of all $2 \times 2$ invertible matrices with real entries. Show that the map $\rho: D_{2n} \to \GL_2(\R)$ defined on the generators by
\[ \rho(r)=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix} \text{ and }
\rho(s)=\begin{bmatrix}
0 & 1\\
1& 0
\end{bmatrix}\]
extends to a homomorphism of $D_{2n}$ into $\GL_2(\R)$.
(c) Determine whether the homomorphism $\rho$ in part (b) is injective and/or surjective.

Let $A$ and $B$ be normal subgroups of a group $G$. Suppose $A\cap B=\{e\}$, where $e$ is the unit element of the group $G$.
Show that for any $a \in A$ and $b \in B$ we have $ab=ba$.

An isomorphism from a group $G$ to itself is calledan automorphismof $G$.
The set of all automorphism is denoted by $\Aut(G)$.

Definition (characteristic subgroup).

A subgroup $H$ of a group $G$ is called characteristic in $G$ if for any $\phi \in \Aut(G)$, we have $\phi(H)=H$. In words, this means that each automorphism of $G$ maps $H$ to itself.

Prove the followings.

(a) If $H$ is characteristic in $G$, then $H$ is a normal subgroup of $G$.

(b) If $H$ is the unique subgroup of $G$ of a given order, then $H$ is characteristic in $G$.

(c) Suppose that a subgroup $K$ is characteristic in a group $H$ and $H$ is a normal subgroup of $G$. Then $K$ is a normal subgroup in $G$.

Let $p$ be a prime number. Suppose that the order of each element of a finite group $G$ is a power of $p$. Then prove that $G$ is a $p$-group. Namely, the order of $G$ is a power of $p$.

Let $G$ be a group of order $|G|=p^n$ for some $n \in \N$.
(Such a group is called a $p$-group.)
Show that the center $Z(G)$ of the group $G$ is not trivial.
Read solution