Category: Linear Algebra

A Matrix Commuting With a Diagonal Matrix with Distinct Entries is Diagonal

Problem 492

Let
\[D=\begin{bmatrix}
d_1 & 0 & \dots & 0 \\
0 &d_2 & \dots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \dots & d_n
\end{bmatrix}\] be a diagonal matrix with distinct diagonal entries: $d_i\neq d_j$ if $i\neq j$.
Let $A=(a_{ij})$ be an $n\times n$ matrix such that $A$ commutes with $D$, that is,
\[AD=DA.\] Then prove that $A$ is a diagonal matrix.

 
Read solution

LoadingAdd to solve later

Determine Whether There Exists a Nonsingular Matrix Satisfying $A^4=ABA^2+2A^3$

Problem 486

Determine whether there exists a nonsingular matrix $A$ if
\[A^4=ABA^2+2A^3,\] where $B$ is the following matrix.
\[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
2 & 1 & -4
\end{bmatrix}.\]

If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.

(The Ohio State University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Compute $A^{10}\mathbf{v}$ Using Eigenvalues and Eigenvectors of the Matrix $A$

Problem 485

Let
\[A=\begin{bmatrix}
1 & -14 & 4 \\
-1 &6 &-2 \\
-2 & 24 & -7
\end{bmatrix} \quad \text{ and }\quad \mathbf{v}=\begin{bmatrix}
4 \\
-1 \\
-7
\end{bmatrix}.\] Find $A^{10}\mathbf{v}$.

You may use the following information without proving it.
The eigenvalues of $A$ are $-1, 0, 1$. The eigenspaces are given by
\[E_{-1}=\Span\left\{\, \begin{bmatrix}
3 \\
-1 \\
-5
\end{bmatrix} \,\right\}, \quad E_{0}=\Span\left\{\, \begin{bmatrix}
-2 \\
1 \\
4
\end{bmatrix} \,\right\}, \quad E_{1}=\Span\left\{\, \begin{bmatrix}
-4 \\
2 \\
7
\end{bmatrix} \,\right\}.\]

(The Ohio State University, Linear Algebra Final Exam Problem)

 
Read solution

LoadingAdd to solve later

Find a Basis of the Vector Space of Polynomials of Degree 2 or Less Among Given Polynomials

Problem 481

Let $P_2$ be the vector space of all polynomials with real coefficients of degree $2$ or less.
Let $S=\{p_1(x), p_2(x), p_3(x), p_4(x)\}$, where
\begin{align*}
p_1(x)&=-1+x+2x^2, \quad p_2(x)=x+3x^2\\
p_3(x)&=1+2x+8x^2, \quad p_4(x)=1+x+x^2.
\end{align*}

(a) Find a basis of $P_2$ among the vectors of $S$. (Explain why it is a basis of $P_2$.)

(b) Let $B’$ be the basis you obtained in part (a).
For each vector of $S$ which is not in $B’$, find the coordinate vector of it with respect to the basis $B’$.

(The Ohio State University, Linear Algebra Final Exam Problem)

 
Read solution

LoadingAdd to solve later

Determine Whether Given Subsets in $\R^4$ are Subspaces or Not

Problem 480

(a) Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}$ satisfying
\[2x+4y+3z+7w+1=0.\] Determine whether $S$ is a subspace of $\R^4$. If so prove it. If not, explain why it is not a subspace.

(b) Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}$ satisfying
\[2x+4y+3z+7w=0.\] Determine whether $S$ is a subspace of $\R^4$. If so prove it. If not, explain why it is not a subspace.

(These two problems look similar but note that the equations are different.)

(The Ohio State University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Find an Orthonormal Basis of the Range of a Linear Transformation

Problem 478

Let $T:\R^2 \to \R^3$ be a linear transformation given by
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right)
=
\begin{bmatrix}
x_1-x_2 \\
x_2 \\
x_1+ x_2
\end{bmatrix}.\] Find an orthonormal basis of the range of $T$.

(The Ohio State University, Linear Algebra Final Exam Problem)

 
Read solution

LoadingAdd to solve later

A Linear Transformation Preserves Exactly Two Lines If and Only If There are Two Real Non-Zero Eigenvalues

Problem 472

Let $T:\R^2 \to \R^2$ be a linear transformation and let $A$ be the matrix representation of $T$ with respect to the standard basis of $\R^2$.

Prove that the following two statements are equivalent.

(a) There are exactly two distinct lines $L_1, L_2$ in $\R^2$ passing through the origin that are mapped onto themselves:
\[T(L_1)=L_1 \text{ and } T(L_2)=L_2.\]

(b) The matrix $A$ has two distinct nonzero real eigenvalues.

 
Read solution

LoadingAdd to solve later

Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$

Problem 471

Let $A$ be a $3\times 3$ real orthogonal matrix with $\det(A)=1$.

(a) If $\frac{-1+\sqrt{3}i}{2}$ is one of the eigenvalues of $A$, then find the all the eigenvalues of $A$.

(b) Let
\[A^{100}=aA^2+bA+cI,\] where $I$ is the $3\times 3$ identity matrix.
Using the Cayley-Hamilton theorem, determine $a, b, c$.

(Kyushu University, Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$

Problem 466

Let
\[A=\begin{bmatrix}
1 & 2\\
4& 3
\end{bmatrix}.\]

(a) Find eigenvalues of the matrix $A$.

(b) Find eigenvectors for each eigenvalue of $A$.

(c) Diagonalize the matrix $A$. That is, find an invertible matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

(d) Diagonalize the matrix $A^3-5A^2+3A+I$, where $I$ is the $2\times 2$ identity matrix.

(e) Calculate $A^{100}$. (You do not have to compute $5^{100}$.)

(f) Calculate
\[(A^3-5A^2+3A+I)^{100}.\] Let $w=2^{100}$. Express the solution in terms of $w$.

 
Read solution

LoadingAdd to solve later

Are Linear Transformations of Derivatives and Integrations Linearly Independent?

Problem 463

Let $W=C^{\infty}(\R)$ be the vector space of all $C^{\infty}$ real-valued functions (smooth function, differentiable for all degrees of differentiation).
Let $V$ be the vector space of all linear transformations from $W$ to $W$.
The addition and the scalar multiplication of $V$ are given by those of linear transformations.

Let $T_1, T_2, T_3$ be the elements in $V$ defined by
\begin{align*}
T_1\left(\, f(x) \,\right)&=\frac{\mathrm{d}}{\mathrm{d}x}f(x)\\[6pt] T_2\left(\, f(x) \,\right)&=\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x)\\[6pt] T_3\left(\, f(x) \,\right)&=\int_{0}^x \! f(t)\,\mathrm{d}t.
\end{align*}
Then determine whether the set $\{T_1, T_2, T_3\}$ are linearly independent or linearly dependent.

 
Read solution

LoadingAdd to solve later