Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)

Problem 178

Let
\[\begin{bmatrix}
0 & 0 & 1 \\
1 &0 &0 \\
0 & 1 & 0
\end{bmatrix}.\]

(a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers?

(b) Calculate $A^{2009}$.

(Princeton University, Linear Algebra Exam)
 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) The characteristic polynomial and the eigenvalues

The characteristic polynomial $p(t)$ of the matrix $A$ is the determinant of $A-tI$. We compute $p(t)=\det(A-tI)$ as follows.
\begin{align*}
p(t)&=\det(A-tI)\\
&=\begin{vmatrix}
-t & 0 & 1 \\
1 &-t &0 \\
0 & 1 & -t
\end{vmatrix}\\
&=-t\begin{vmatrix}
-t & 0\\
1& -t
\end{vmatrix}+\begin{vmatrix}
1 & -t\\
0& 1
\end{vmatrix} \text{ by the first row cofactor expansion}\\
=-t^3+1.
\end{align*}

Thus, the characteristic polynomial of the matrix $A$ is
\[p(t)=-t^3+1.\] The eigenvalues of the matrix $A$ is roots of the characteristic polynomial.
Hence solving $-t^3+1=0$, we obtain
\[t=1, \frac{-1\pm\sqrt{3}i}{2}\] and these are all eigenvalues of $A$.

The matrix $A$ is a $3\times 3$ matrix, and hence it has at most three distinct eigenvalues, and
we found three distinct eigenvalues. In general, if an $n\times n$ matrix has $n$ distinct eigenvalues, the matrix is diagonalizable. Thus the matrix $A$ is diagonalizable.

(b) $A^{2009}$

By direct computations, we have
\[A^2=\begin{bmatrix}
0 & 0 & 1 \\
1 &0 &0 \\
0 & 1 & 0
\end{bmatrix}\begin{bmatrix}
0 & 0 & 1 \\
1 &0 &0 \\
0 & 1 & 0
\end{bmatrix}=\begin{bmatrix}
0 & 1 & 0 \\
0 &0 &1 \\
1 & 0 & 0
\end{bmatrix}\] \[A^3=AA^2=\begin{bmatrix}
0 & 0 & 1 \\
1 &0 &0 \\
0 & 1 & 0
\end{bmatrix}\begin{bmatrix}
0 & 1 & 0 \\
0 &0 &1 \\
1 & 0 & 0
\end{bmatrix}=I,\] where $I$ is the $3\times 3$ identity matrix.

Therefore noting that $2009=3\cdot 669 +2$, we have
\begin{align*}
A^{2009}&=A^{3\cdot 669+2}=(A^{3})^{669} A^2\\
&=I^{669}A^2=A^2.
\end{align*}
Therefore, we obtain
\[A^{2009}=\begin{bmatrix}
0 & 1 & 0 \\
0 &0 &1 \\
1 & 0 & 0
\end{bmatrix}.\]

Another solution using diagonalization

Here, I give another solution for (b) using the diagonalization of the matrix $A$.
For this particular matrix $A$, the above solution is easier since the power of $A$ has a simple pattern.

The following computation is lengthy, but I give it for a pedagogical reason.
I just outline the solution and omit the detail computations.
We obtained eigenvectors $\zeta^{k}, k=0,1,2$, where $\zeta$ is a primitive third root of unity in (a).
Eigenvectors are $\begin{bmatrix}
\zeta^{2k} \\
\zeta^k \\
1
\end{bmatrix}$
for each eigenvalue $\zeta^k$.
Then let
\[S=\begin{bmatrix}
1 & \zeta^2 & \zeta \\
1 &\zeta &\zeta^2 \\
1 & 1 & 1
\end{bmatrix}\] be the matrix whose columns are eigenvectors.

It has the inverse
\[S^{-1}=\frac{1}{3}\begin{bmatrix}
1 & 1 & 1 \\
\zeta &\zeta^2 &1 \\
\zeta^2 & \zeta & 1
\end{bmatrix}.\] Then the matrix $S$ diagonalize the matrix $A$ and we obtain
\[S^{-1}AS=\begin{bmatrix}
1 & 0 & 0 \\
0 &\zeta &0 \\
0 & 0 & \zeta^2
\end{bmatrix}.\] Then we compute
\begin{align*}
A^{2009}&=S\begin{bmatrix}
1 & 0 & 0 \\
0 &\zeta^{2009} &0 \\
0 & 0 & \zeta^{2(2009)}
\end{bmatrix} S^{-1}\\
&=S\begin{bmatrix}
1 & 0 & 0 \\
0 &\zeta^2 &0 \\
0 & 0 & \zeta
\end{bmatrix}S^{-1}
=\begin{bmatrix}
0 & 1 & 0 \\
0 &0 &1 \\
1 & 0 & 0
\end{bmatrix}.
\end{align*}


LoadingAdd to solve later

Sponsored Links

More from my site

  • A Square Root Matrix of a Symmetric MatrixA Square Root Matrix of a Symmetric Matrix Answer the following two questions with justification. (a) Does there exist a $2 \times 2$ matrix $A$ with $A^3=O$ but $A^2 \neq O$? Here $O$ denotes the $2 \times 2$ zero matrix. (b) Does there exist a $3 \times 3$ real matrix $B$ such that $B^2=A$ […]
  • Maximize the Dimension of the Null Space of $A-aI$Maximize the Dimension of the Null Space of $A-aI$ Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.\] Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]
  • Rotation Matrix in Space and its Determinant and EigenvaluesRotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by \[A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.\] (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]
  • Find the Limit of a MatrixFind the Limit of a Matrix Let \[A=\begin{bmatrix} \frac{1}{7} & \frac{3}{7} & \frac{3}{7} \\ \frac{3}{7} &\frac{1}{7} &\frac{3}{7} \\ \frac{3}{7} & \frac{3}{7} & \frac{1}{7} \end{bmatrix}\] be $3 \times 3$ matrix. Find \[\lim_{n \to \infty} A^n.\] (Nagoya University Linear […]
  • True of False Problems on Determinants and Invertible MatricesTrue of False Problems on Determinants and Invertible Matrices Determine whether each of the following statements is True or False. (a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$. (b) If the characteristic polynomial of an $n \times n$ matrix $A$ […]
  • Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible.Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible. Let \[A=\begin{bmatrix} 1 & 3 & 3 \\ -3 &-5 &-3 \\ 3 & 3 & 1 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 4 & 3 \\ -4 &-6 &-3 \\ 3 & 3 & 1 \end{bmatrix}.\] For this problem, you may use the fact that both matrices have the same characteristic […]
  • Eigenvalues and their Algebraic Multiplicities of a Matrix with a VariableEigenvalues and their Algebraic Multiplicities of a Matrix with a Variable Determine all eigenvalues and their algebraic multiplicities of the matrix \[A=\begin{bmatrix} 1 & a & 1 \\ a &1 &a \\ 1 & a & 1 \end{bmatrix},\] where $a$ is a real number.   Proof. To find eigenvalues we first compute the characteristic polynomial of the […]
  • Find All the Eigenvalues of Power of Matrix and Inverse MatrixFind All the Eigenvalues of Power of Matrix and Inverse Matrix Let \[A=\begin{bmatrix} 3 & -12 & 4 \\ -1 &0 &-2 \\ -1 & 5 & -1 \end{bmatrix}.\] Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.   Proof. We first determine all the eigenvalues of the matrix […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Idempotent Matrix Problems and Solutions in Linear Algebra
Idempotent Matrix and its Eigenvalues

Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$. (a) Find a nonzero,...

Close