Commuting Matrices $AB=BA$ such that $A-B$ is Nilpotent Have the Same Eigenvalues

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 587

Let $A$ and $B$ be square matrices such that they commute each other: $AB=BA$.
Assume that $A-B$ is a nilpotent matrix.

Then prove that the eigenvalues of $A$ and $B$ are the same.

 
LoadingAdd to solve later

Sponsored Links

Proof.

Let $N:=A-B$. By assumption, the matrix $N$ is nilpotent.
This means that there exists a positive integer $n$ such that $N^n$ is the zero matrix $O$.

Let $\lambda$ be an eigenvalue of $B$ and let $\mathbf{v}$ be an eigenvector corresponding to $\lambda$. That is, we have $B\mathbf{v}=\lambda \mathbf{v}$ and $\mathbf{v}\neq \mathbf{0}$.
We prove that $\lambda$ is also an eigenvalue of $A$.


Note that since $A$ and $B$ commute each other, it follows that the matrices $N$ and $B-\lambda I$ commute each other as well.
Then we compute
\begin{align*}
(A-\lambda I)^n&=(N+B-\lambda I)^n\\
&=\sum_{i=0}^n \begin{pmatrix}
n \\
i
\end{pmatrix}
N^i(B-\lambda I)^{n-i},
\end{align*}
where the second equality follows by the binomial expansion. (Note that the binomial expansion is true for matrices commuting each other.)
Then we have
\begin{align*}
(A-\lambda I)^n \mathbf{v}&=\sum_{i=0}^{n-1} \begin{pmatrix}
n \\
i
\end{pmatrix}
N^i(B-\lambda I)^{n-i}\mathbf{v}+N^n\mathbf{v}=\mathbf{0}
\end{align*}
since $(B-\lambda I)\mathbf{v}=\mathbf{0}$ and $N^n=O$.


This implies that there exists an integer $k$, $0\leq k \leq n-1$ such that
\[\mathbf{u}:=(A-\lambda I)^k\mathbf{v}\neq \mathbf{0} \text{ and } (A-\lambda I)^{k+1}\mathbf{v}=\mathbf{0}.\]

It yields that $(A-\lambda I)\mathbf{u}=\mathbf{0}$ and $\mathbf{u}\neq \mathbf{0}$, or equivalently $A\mathbf{u}=\lambda \mathbf{u}$.
Hence $\lambda$ is an eigenvalue of $A$.


This proves that each eigenvalue of $B$ is an eigenvalue of $A$.
Note that if $A-B$ is nilpotent, then $B-A$ is also nilpotent.
Thus, switching the roles of $A$ and $B$, we also see that each eigenvalue of $A$ is an eigenvalue of $B$.
Therefore, the eigenvalues of $A$ and $B$ are the same.


LoadingAdd to solve later

Sponsored Links

More from my site

  • If Two Ideals Are Comaximal in a Commutative Ring, then Their Powers Are Comaximal IdealsIf Two Ideals Are Comaximal in a Commutative Ring, then Their Powers Are Comaximal Ideals Let $R$ be a commutative ring and let $I_1$ and $I_2$ be comaximal ideals. That is, we have \[I_1+I_2=R.\] Then show that for any positive integers $m$ and $n$, the ideals $I_1^m$ and $I_2^n$ are comaximal.   > Proof. Since $I_1+I_2=R$, there exists $a \in I_1$ […]
  • Nilpotent Matrices and Non-Singularity of Such MatricesNilpotent Matrices and Non-Singularity of Such Matrices Let $A$ be an $n \times n$ nilpotent matrix, that is, $A^m=O$ for some positive integer $m$, where $O$ is the $n \times n$ zero matrix. Prove that $A$ is a singular matrix and also prove that $I-A, I+A$ are both nonsingular matrices, where $I$ is the $n\times n$ identity […]
  • Nilpotent Matrix and Eigenvalues of the MatrixNilpotent Matrix and Eigenvalues of the Matrix An $n\times n$ matrix $A$ is called nilpotent if $A^k=O$, where $O$ is the $n\times n$ zero matrix. Prove the followings. (a) The matrix $A$ is nilpotent if and only if all the eigenvalues of $A$ is zero. (b) The matrix $A$ is nilpotent if and only if […]
  • An Example of a Matrix that Cannot Be a CommutatorAn Example of a Matrix that Cannot Be a Commutator Let $I$ be the $2\times 2$ identity matrix. Then prove that $-I$ cannot be a commutator $[A, B]:=ABA^{-1}B^{-1}$ for any $2\times 2$ matrices $A$ and $B$ with determinant $1$.   Proof. Assume that $[A, B]=-I$. Then $ABA^{-1}B^{-1}=-I$ implies \[ABA^{-1}=-B. […]
  • Is the Product of a Nilpotent Matrix and an Invertible Matrix Nilpotent?Is the Product of a Nilpotent Matrix and an Invertible Matrix Nilpotent? A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix. (a) If $A$ is a nilpotent $n \times n$ matrix and $B$ is an $n\times n$ matrix such that $AB=BA$. Show that the product $AB$ is nilpotent. (b) Let $P$ […]
  • A Recursive Relationship for a Power of a MatrixA Recursive Relationship for a Power of a Matrix Suppose that the $2 \times 2$ matrix $A$ has eigenvalues $4$ and $-2$. For each integer $n \geq 1$, there are real numbers $b_n , c_n$ which satisfy the relation \[ A^{n} = b_n A + c_n I , \] where $I$ is the identity matrix. Find $b_n$ and $c_n$ for $2 \leq n \leq 5$, and […]
  • Is the Derivative Linear Transformation Diagonalizable?Is the Derivative Linear Transformation Diagonalizable? Let $\mathrm{P}_2$ denote the vector space of polynomials of degree $2$ or less, and let $T : \mathrm{P}_2 \rightarrow \mathrm{P}_2$ be the derivative linear transformation, defined by \[ T( ax^2 + bx + c ) = 2ax + b . \] Is $T$ diagonalizable? If so, find a diagonal matrix which […]
  • Every Diagonalizable Nilpotent Matrix is the Zero MatrixEvery Diagonalizable Nilpotent Matrix is the Zero Matrix Prove that if $A$ is a diagonalizable nilpotent matrix, then $A$ is the zero matrix $O$.   Definition (Nilpotent Matrix) A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$. Proof. Main Part Since $A$ is […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
symmetric matrices problems
The set of $2\times 2$ Symmetric Matrices is a Subspace

Let $V$ be the vector space over $\R$ of all real $2\times 2$ matrices. Let $W$ be the subset of...

Close