Compute Power of Matrix If Eigenvalues and Eigenvectors Are Given

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 373

Let $A$ be a $3\times 3$ matrix. Suppose that $A$ has eigenvalues $2$ and $-1$, and suppose that $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors corresponding to $2$ and $-1$, respectively, where
\[\mathbf{u}=\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix} \text{ and } \mathbf{v}=\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}.\] Then compute $A^5\mathbf{w}$, where
\[\mathbf{w}=\begin{bmatrix}
7 \\
2 \\
-3
\end{bmatrix}.\]

 
FavoriteLoadingAdd to solve later

Sponsored Links

Solution.

Since $\mathbf{u}$ is an eigenvector corresponding to the eigenvalue $2$, we have
\[A\mathbf{u}=2\mathbf{u}.\] Similarly, we have
\[A\mathbf{v}=-\mathbf{v}.\] From these, we have
\[A^5\mathbf{u}=2^5\mathbf{u} \text{ and } A\mathbf{v}=(-1)^5\mathbf{v}.\]

To compute $A^5\mathbf{w}$, we first need to express $\mathbf{w}$ as a linear combination of $\mathbf{u}$ and $\mathbf{v}$. Thus, we need to find scalars $c_1, c_2$ such that
\[\mathbf{w}=c_1\mathbf{u}+c_2\mathbf{v}.\] By inspection, we have
\[\begin{bmatrix}
7 \\
2 \\
-3
\end{bmatrix}=3\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}+2\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix},\] and thus we obtain $c_1=3$ and $c_2=2$,

We compute $A^5\mathbf{w}$ as follows:
\begin{align*}
A^5\mathbf{w}&=A^5(3\mathbf{u}+2\mathbf{v})\\
&=3A^5\mathbf{u}+2A^5\mathbf{v}\\
&=3\cdot 2^5\mathbf{u}+2\cdot (-1)^5\mathbf{v}\\
&=96\mathbf{u}-2\mathbf{v}\\[6pt] &=96\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}-2\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
92 \\
-2 \\
-96
\end{bmatrix}.
\end{align*}

Therefore, the result is
\[A^5\mathbf{w}=\begin{bmatrix}
92 \\
-2 \\
-96
\end{bmatrix}.\]


FavoriteLoadingAdd to solve later

Sponsored Links

More from my site

  • How to Find a Formula of the Power of a MatrixHow to Find a Formula of the Power of a Matrix Let $A= \begin{bmatrix} 1 & 2\\ 2& 1 \end{bmatrix}$. Compute $A^n$ for any $n \in \N$. Plan. We diagonalize the matrix $A$ and use this Problem. Steps. Find eigenvalues and eigenvectors of the matrix $A$. Diagonalize the matrix $A$. Use […]
  • Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$ Let \[A=\begin{bmatrix} 1 & 2\\ 4& 3 \end{bmatrix}.\] (a) Find eigenvalues of the matrix $A$. (b) Find eigenvectors for each eigenvalue of $A$. (c) Diagonalize the matrix $A$. That is, find an invertible matrix $S$ and a diagonal matrix $D$ such that […]
  • Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$ Let $A$ be a $3\times 3$ real orthogonal matrix with $\det(A)=1$. (a) If $\frac{-1+\sqrt{3}i}{2}$ is one of the eigenvalues of $A$, then find the all the eigenvalues of $A$. (b) Let \[A^{100}=aA^2+bA+cI,\] where $I$ is the $3\times 3$ identity matrix. Using the […]
  • Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam)Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam) Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$. Compute $A^2\begin{bmatrix} 4 […]
  • Two Eigenvectors Corresponding to Distinct Eigenvalues are Linearly IndependentTwo Eigenvectors Corresponding to Distinct Eigenvalues are Linearly Independent Let $A$ be an $n\times n$ matrix. Suppose that $\lambda_1, \lambda_2$ are distinct eigenvalues of the matrix $A$ and let $\mathbf{v}_1, \mathbf{v}_2$ be eigenvectors corresponding to $\lambda_1, \lambda_2$, respectively. Show that the vectors $\mathbf{v}_1, \mathbf{v}_2$ are […]
  • Given All Eigenvalues and Eigenspaces, Compute a Matrix ProductGiven All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces \[E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […]
  • Linear Combination of Eigenvectors is Not an EigenvectorLinear Combination of Eigenvectors is Not an Eigenvector Suppose that $\lambda$ and $\mu$ are two distinct eigenvalues of a square matrix $A$ and let $\mathbf{x}$ and $\mathbf{y}$ be eigenvectors corresponding to $\lambda$ and $\mu$, respectively. If $a$ and $b$ are nonzero numbers, then prove that $a \mathbf{x}+b\mathbf{y}$ is not an […]
  • Find the Formula for the Power of a MatrixFind the Formula for the Power of a Matrix Let \[A=\begin{bmatrix} 1 & 1 & 1 \\ 0 &0 &1 \\ 0 & 0 & 1 \end{bmatrix}\] be a $3\times 3$ matrix. Then find the formula for $A^n$ for any positive integer $n$.   Proof. We first compute several powers of $A$ and guess the general formula. We […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Hyperplane Through Origin is Subspace of 4-Dimensional Vector Space

Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ satisfying...

Close