Determine a Condition on $a, b$ so that Vectors are Linearly Dependent

Problems and solutions in Linear Algebra

Problem 563

Let
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
a \\
5
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
0 \\
4 \\
b
\end{bmatrix}\] be vectors in $\R^3$.

Determine a condition on the scalars $a, b$ so that the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.

 
LoadingAdd to solve later

Sponsored Links


Solution.

Consider the equation
\[x_1\mathbf{v}_1+x_2\mathbf{v}_2+x_3\mathbf{v}_3=\mathbf{0},\] where $\mathbf{0}$ is the three-dimensional zero vector.

Our goal is to find a condition on $a, b$ so that the above equation has a nontrivial solution $x_1, x_2, x_3$.

This equation is equivalent to the $3\times 3$ homogeneous system of linear equations
\[\begin{bmatrix}
1 & 1 & 0 \\
2 &a &4 \\
0 & 5 & b
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}=\mathbf{0}.\]


We solve the system by Gauss-Jordan elimination.
The augmented matrix of the system is
\[\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
2 &a & 4 & 0 \\
0 & 5 & b & 0
\end{array} \right].\]

Applying elementary row operations, we have
\begin{align*}
\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
2 &a & 4 & 0 \\
0 & 5 & b & 0
\end{array} \right] \xrightarrow{R_2-2R_1}
\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
0 &a-2 & 4 & 0 \\
0 & 5 & b & 0
\end{array} \right] \xrightarrow{\frac{1}{5}R_3}\\[6pt] \left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
0 &a-2 & 4 & 0 \\
0 & 1 & b/5 & 0
\end{array} \right] \xrightarrow{R_2\leftrightarrow R_3}
\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
0 & 1 & b/5 & 0 \\
0 &a-2 & 4 & 0 \\
\end{array} \right] \\[6pt] \xrightarrow{R_3-(a-2)R_2}
\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
0 & 1 & b/5 & 0 \\
0 &0 & 4-\frac{b(a-2)}{5} & 0 \\
\end{array} \right] \end{align*}


If the $(3,3)$ entry $4-\frac{b(a-2)}{5}$ of the last matrix is $4-\frac{b(a-2)}{5}$ is zero, then we obtain a matrix in echelon form
\[ \left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
0 & 1 & b/5 & 0 \\
0 &0 & 0 & 0 \\
\end{array} \right].\] This implies that $x_3$ is a free variable, hence the homogeneous system has a nonzero solution $x_1, x_2, x_3$. Hence in this case the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.


On the other hand, if $4-\frac{b(a-2)}{5}\neq 0$, we divide the third row by this number and obtain
\[ \left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
0 & 1 & b/5 & 0 \\
0 &0 & 1 & 0 \\
\end{array} \right],\] and from this we see that the solution is $x_1=x_2=x_3=0$.
Thus in this case the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.


In conclusion, the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent if and only if $4-\frac{b(a-2)}{5}= 0$.
Thus, the condition on $a, b$ is

\[b(a-2)=20.\]

Related Question.

Problem.
Determine conditions on the scalars $a, b$ so that the following set $S$ of vectors is linearly dependent.
\begin{align*}
S=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\},
\end{align*}
where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
3 \\
1
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
a \\
4
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
0 \\
2 \\
b
\end{bmatrix}.\]

The solution is given in the post ↴
Determine Conditions on Scalars so that the Set of Vectors is Linearly Dependent


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 09/13/2017

    […] The solution is given in the post ↴ Determine a Condition on $a$ so that Vectors are Linearly Dependent […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Two Matrices are Nonsingular if and only if the Product is Nonsingular

An $n\times n$ matrix $A$ is called nonsingular if the only vector $\mathbf{x}\in \R^n$ satisfying the equation $A\mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$....

Close