Determine Null Spaces of Two Matrices

Problems and solutions in Linear Algebra

Problem 242

Let
\[A=\begin{bmatrix}
1 & 2 & 2 \\
2 &3 &2 \\
-1 & -3 & -4
\end{bmatrix} \text{ and }
B=\begin{bmatrix}
1 & 2 & 2 \\
2 &3 &2 \\
5 & 3 & 3
\end{bmatrix}.\]

Determine the null spaces of matrices $A$ and $B$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

The null space of the matrix $A$

We first determine the null space of the matrix $A$.
By definition, the null space is
\[\calN(A):=\{\mathbf{x}\in \R^3 \mid A\mathbf{x}=\mathbf{0}\},\] that is, the null space of $A$ consists of the solution $\mathbf{x}$ of the linear system $A\mathbf{x}=\mathbf{0}$.

To solve the system $A\mathbf{x}=\mathbf{0}$, we apply the Gauss-Jordan elimination. We reduce the augmented matrix $[A|\mathbf{0}]$ by elementary row operations as follows.
\begin{align*}
\left[\begin{array}{rrr|r}
1 & 2 & 2 & 0 \\
2 &3 & 2 & 0 \\
-1 & -3 & -4 & 0
\end{array} \right] \xrightarrow{\substack{R_2-2R_1\\R_3+R_1}}
\left[\begin{array}{rrr|r}
1 & 2 & 2 & 0 \\
0 & -1 & -2 & 0 \\
0 & -1 & -2 & 0
\end{array} \right] \xrightarrow{\substack{R_1+2R_2\\R_3-5R_2}}\\
\left[\begin{array}{rrr|r}
1 & 0 & -2 & 0 \\
0 & -1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array} \right] \xrightarrow{-R_2}
\left[\begin{array}{rrr|r}
1 & 0 & -2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array} \right].
\end{align*}
The last matrix is in reduced row echelon form, and the solutions $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$ of $A\mathbf{x}=\mathbf{0}$ satisfy
\[x_1=2x_3 \text{ and } x_2=-2x_3\] and $x_3$ is a free variable.
Thus we have
\[\mathbf{x}=\begin{bmatrix}
2x_3 \\
-2x_3 \\
x_3
\end{bmatrix}=x_3\begin{bmatrix}
2 \\
-2 \\
1
\end{bmatrix}\] for any $x_3$ are solutions.

Therefore the null space of the matrix $A$ is
\begin{align*}
\calN(A)&=\left\{\mathbf{x}\in \R^3 \quad \middle| \quad \mathbf{x}=x_3\begin{bmatrix}
2 \\
-2 \\
1
\end{bmatrix} \text{ for any } x_3\in \R \right\}\\
&=\Span\left(\begin{bmatrix}
2 \\
-2 \\
1
\end{bmatrix}\right),
\end{align*}
the subspace of $\R^3$ spanned by the vector $\begin{bmatrix}
2 \\
-2 \\
1
\end{bmatrix}$.

The null space of the matrix $B$

The same procedure works for the matrix $B$. Thus we omit some detail below.
For the matrix $B$, the augmented matrix is reduced to
\[ \left[\begin{array}{rrr|r}
1 & 2 & 2 & 0 \\
2 &3 & 2 & 0 \\
5 & 3 & 3 & 0
\end{array} \right] \to \cdots \to \left[\begin{array}{rrr|r}
1 & 0 & 0 & 0 \\
0 &1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array} \right].\] (Check the computation by yourself.)
This implies that $\mathbf{x}=\mathbf{0}$ is the only solution of the system $B\mathbf{x}=\mathbf{0}$.
Therefore, the null space $\calN(B)$ of the matrix $B$ consists of just the zero vector:
\[\calN(B)=\left\{\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \right\}.\]

Comment.

The dimension of the null space $\calN(A)$ is $1$, and the dimension of the null space $\calN(B)$ is $0$.
In other words, the nullity of the matrix $A$ is $1$, and the nullity of the matrix $B$ is $0$.
(Recall that the nullity of a matrix is just the dimension of the null space of the matrix.)

Related Question.

The proof of the fact that a null space of a matrix is a subspace is give in the post The null space (the kernel) of a matrix is a subspace of $\R^n$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

4 Responses

  1. Simon says:

    there is a slight error. x_1=2x_3 and x_2=-x_3 but it should be x_2=-2x_3

  1. 01/04/2017

    […] Determine null spaces of two matrices […]

Click here to cancel reply.

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
If Eigenvalues of a Matrix $A$ are Less than $1$, then Determinant of $I-A$ is Positive

Let $A$ be an $n \times n$ matrix. Suppose that all the eigenvalues $\lambda$ of $A$ are real and satisfy...

Close