Let A be the matrix
\[\begin{bmatrix}
1 & -1 & 0 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}.\]
Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse.

This is in reduced row echelon form and the left $3 \times 3$ part is the identity matrix. Hence $A$ is invertible and the inverse matrix is
\[A^{-1}=\begin{bmatrix}
1 & 1 & 1 \\
0 &1 &1 \\
0 & 0 & 1
\end{bmatrix}.\]

Find the Inverse Matrix of a $3\times 3$ Matrix if Exists
Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 1 & 2 \\
0 &0 &1 \\
1 & 0 & 1
\end{bmatrix}\]
if it exists. If you think there is no inverse matrix of $A$, then give a reason.
(The Ohio State University, Linear Algebra Midterm Exam […]

Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation
(a) Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 0 & 1 \\
1 &0 &0 \\
2 & 1 & 1
\end{bmatrix}\]
if it exists. If you think there is no inverse matrix of $A$, then give a reason.
(b) Find a nonsingular $2\times 2$ matrix $A$ such that
\[A^3=A^2B-3A^2,\]
where […]

Solving a System of Linear Equations By Using an Inverse Matrix
Consider the system of linear equations
\begin{align*}
x_1&= 2, \\
-2x_1 + x_2 &= 3, \\
5x_1-4x_2 +x_3 &= 2
\end{align*}
(a) Find the coefficient matrix and its inverse matrix.
(b) Using the inverse matrix, solve the system of linear equations.
(The Ohio […]

The Inverse Matrix of an Upper Triangular Matrix with Variables
Let $A$ be the following $3\times 3$ upper triangular matrix.
\[A=\begin{bmatrix}
1 & x & y \\
0 &1 &z \\
0 & 0 & 1
\end{bmatrix},\]
where $x, y, z$ are some real numbers.
Determine whether the matrix $A$ is invertible or not. If it is invertible, then find […]

Find the Inverse Matrices if Matrices are Invertible by Elementary Row Operations
For each of the following $3\times 3$ matrices $A$, determine whether $A$ is invertible and find the inverse $A^{-1}$ if exists by computing the augmented matrix $[A|I]$, where $I$ is the $3\times 3$ identity matrix.
(a) $A=\begin{bmatrix}
1 & 3 & -2 \\
2 &3 &0 \\
[…]

Express a Vector as a Linear Combination of Other Vectors
Express the vector $\mathbf{b}=\begin{bmatrix}
2 \\
13 \\
6
\end{bmatrix}$ as a linear combination of the vectors
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
5 \\
-1
\end{bmatrix},
\mathbf{v}_2=
\begin{bmatrix}
1 \\
2 \\
1
[…]

Solve the System of Linear Equations Using the Inverse Matrix of the Coefficient Matrix
Consider the following system of linear equations
\begin{align*}
2x+3y+z&=-1\\
3x+3y+z&=1\\
2x+4y+z&=-2.
\end{align*}
(a) Find the coefficient matrix $A$ for this system.
(b) Find the inverse matrix of the coefficient matrix found in (a)
(c) Solve the system using […]

Find Values of $h$ so that the Given Vectors are Linearly Independent
Find the value(s) of $h$ for which the following set of vectors
\[\left \{ \mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{v}_2\begin{bmatrix}
h \\
1 \\
-h
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2h \\
3h+1
[…]