Equivalent Conditions For a Prime Ideal in a Commutative Ring

Prime Ideal Problems and Solution in Ring Theory in Mathematics

Problem 174

Let $R$ be a commutative ring and let $P$ be an ideal of $R$. Prove that the following statements are equivalent:

(a) The ideal $P$ is a prime ideal.

(b) For any two ideals $I$ and $J$, if $IJ \subset P$ then we have either $I \subset P$ or $J \subset P$.

 
FavoriteLoadingAdd to solve later

Sponsored Links

Proof.

(a) $\implies$ (b)

Suppose that $P$ is a prime ideal. Let $I$ and $J$ be ideals such that $IJ \subset P$. Assume that
\[I \not \subset P \text{ and } J \not \subset P.\] Then there exist
\[a \in I \setminus P \text{ and } b\in J \setminus P.\]

Then the element $ab$ is in both $I$ and $J$ since $I, J$ are ideals. Then we have
\[ab \in IJ \subset P\] and this implies either $a \in P$ or $b\in P$ since $P$ is a prime ideal.

However, this contradicts the choice of the elements $a, b$.
Therefore, we must have
\[I \subset P \text{ or } J \subset P.\]

(b) $\implies$ (a)

Now we assume statement (b) is true.
Suppose that $ab \in P$, where $a, b \in R$.
Let $I=(a)$, $J=(b)$ be ideals generated by $a$ and $b$, respectively.

Then we have
\[IJ=(ab)\subset P\] since $ab \in P$, and statement (b) implies that we have either $(a)=I\subset P $ or $(b)=J \subset P$.

Hence we have either $a \in P$ or $b\in P$.
Thus $P$ is a prime ideal.


FavoriteLoadingAdd to solve later

Sponsored Links

More from my site

  • Prime Ideal is Irreducible in a Commutative RingPrime Ideal is Irreducible in a Commutative Ring Let $R$ be a commutative ring. An ideal $I$ of $R$ is said to be irreducible if it cannot be written as an intersection of two ideals of $R$ which are strictly larger than $I$. Prove that if $\frakp$ is a prime ideal of the commutative ring $R$, then $\frakp$ is […]
  • Nilpotent Element a in a Ring and Unit Element $1-ab$Nilpotent Element a in a Ring and Unit Element $1-ab$ Let $R$ be a commutative ring with $1 \neq 0$. An element $a\in R$ is called nilpotent if $a^n=0$ for some positive integer $n$. Then prove that if $a$ is a nilpotent element of $R$, then $1-ab$ is a unit for all $b \in R$.   We give two proofs. Proof 1. Since $a$ […]
  • A Prime Ideal in the Ring $\Z[\sqrt{10}]$A Prime Ideal in the Ring $\Z[\sqrt{10}]$ Consider the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}\] and its ideal \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}.\] Show that $p$ is a prime ideal of the ring $\Z[\sqrt{10}]$.   Definition of a prime ideal. An ideal $P$ of a ring $R$ is […]
  • The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral DomainThe Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain. Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a […]
  • In a Principal Ideal Domain (PID), a Prime Ideal is a Maximal IdealIn a Principal Ideal Domain (PID), a Prime Ideal is a Maximal Ideal Let $R$ be a principal ideal domain (PID) and let $P$ be a nonzero prime ideal in $R$. Show that $P$ is a maximal ideal in $R$.   Definition A commutative ring $R$ is a principal ideal domain (PID) if $R$ is a domain and any ideal $I$ is generated by a single element […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]
  • $(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain.$(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain. Let $R$ be an integral domain. Then prove that the ideal $(x^3-y^2)$ is a prime ideal in the ring $R[x, y]$.   Proof. Consider the ring $R[t]$, where $t$ is a variable. Since $R$ is an integral domain, so is $R[t]$. Define the function $\Psi:R[x,y] \to R[t]$ sending […]
  • If a Prime Ideal Contains No Nonzero Zero Divisors, then the Ring is an Integral DomainIf a Prime Ideal Contains No Nonzero Zero Divisors, then the Ring is an Integral Domain Let $R$ be a commutative ring. Suppose that $P$ is a prime ideal of $R$ containing no nonzero zero divisor. Then show that the ring $R$ is an integral domain.   Definitions: zero divisor, integral domain An element $a$ of a commutative ring $R$ is called a zero divisor […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Ring theory
Problems and solutions of ring theory in abstract algebra
Prime Ideal is Irreducible in a Commutative Ring

Let $R$ be a commutative ring. An ideal $I$ of $R$ is said to be irreducible if it cannot be...

Close