Every Finitely Generated Subgroup of Additive Group $\Q$ of Rational Numbers is Cyclic

Group Theory Problems and Solutions in Mathematics

Problem 460

Let $\Q=(\Q, +)$ be the additive group of rational numbers.

(a) Prove that every finitely generated subgroup of $(\Q, +)$ is cyclic.

(b) Prove that $\Q$ and $\Q \times \Q$ are not isomorphic as groups.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that every finitely generated subgroup of $(\Q, +)$ is cyclic.

Let $G$ be a finitely generated subgroup of $(\Q, +)$ and let $r_1, \dots, r_n$ be nonzero generators of $G$.
Let us express
\[r_i=\frac{a_i}{b_i},\] where $a_i, b_i$ are integers.

Let
\[s:=\frac{1}{\prod_{j=1}^n b_j} \in \Q.\] Then we can write each $r_i$ as
\[r_i=\frac{a_i}{b_i}=\left(\, a_i\prod_{\substack{j=1\\j\neq i}}^n b_i \,\right)\cdot \frac{1}{s}.\]

It follows from the last expressions that the elements $r_i$ is contained in the subgroup $\langle s \rangle$ generated by the element $s$.
Hence $G$ is a subgroup of $\langle s \rangle$.
Since every subgroup of a cyclic group is cyclic, we conclude that $G$ is also cyclic.

(b) Prove that $\Q$ and $\Q \times \Q$ are not isomorphic as groups.

Seeking a contradiction, assume that $\Q$ is isomorphic to the direct product $\Q \times \Q$:
\[\Q\cong \Q\times \Q.\]

Then consider the subgroup $\Z\times \Z$ of $\Q\times \Q$.
We claim that the subgroup $\Z\times \Z$ is not cyclic.
If it were cyclic, then there would be a generator $(a,b)\in \Z\times \Z$.

However, for example, the element $(b, -a)$ cannot be expressed as an integer multiple of $(a, b)$.
To see this, suppose that
\[n(a,b)=(b,-a)\] for some integer $n$.

Then we have $na=b$ and $nb=-a$. Substituting the first equality into the second one, we obtain
\[n^2a=-a.\] If $a\neq 0$, then this yields that $n^2=-1$, which is impossible, and hence $a=0$.

Then $na=b$ implies $b=0$ as well.
However, $(a,b)=(0,0)$ is clearly not a generator of $\Z\times \Z$.

Thus we have reached a contradiction and $\Z\times \Z$ is a non-cyclic subgroup of $\Q\times \Q$.
This implies via the isomorphism $\Q\cong \Q \times \Q$ that $\Q$ has a non-cyclic subgroup.
We saw in part (a) that this is impossible.
Therefore, $\Q$ is not isomorphic to $\Q\times \Q$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Prove that a Group of Order 217 is Cyclic and Find the Number of Generators

Let $G$ be a finite group of order $217$. (a) Prove that $G$ is a cyclic group. (b) Determine the...

Close