Every Ring of Order $p^2$ is Commutative

Problems and solutions of ring theory in abstract algebra

Problem 501

Let $R$ be a ring with unit $1$. Suppose that the order of $R$ is $|R|=p^2$ for some prime number $p$.
Then prove that $R$ is a commutative ring.

 
FavoriteLoadingAdd to solve later

Sponsored Links

Proof.

Let us consider the subset
\[Z:=\{z\in R \mid zr=rz \text{ for any } r\in R\}.\] (This is called the center of the ring $R$.)

This is a subgroup of the additive group $R$.
In fact, if $z, z’\in Z$, then we have for any $r\in R$,
\begin{align*}
(z-z’)r=zr-z’r=rz-rz’=r(z-z’).
\end{align*}
It follows that $z-z’\in Z$, and thus $Z$ is a subgroup of $R$.

Note that $0, 1 \in Z$, hence $Z$ is not a trivial subgroup.
Thus, we have either $|Z|=p, p^2$ since $R$ is a group of order $p^2$.

If $|Z|=p^2$, then we have $Z=R$.
By definition of $Z$, this implies that $R$ is commutative.

It remains to show that $|Z|\neq p$.
Assume that $|Z|=p$.
Then $R/Z$ is a cyclic group of order $p$.
Let $\alpha$ be a generator of $R/Z$.

Since $Z\neq R$, there exist $r, s\in R$ such that $rs\neq sr$.
Write
\[r=m\alpha+z \text{ and } s=n\alpha+z’\] for some $m, n\in \Z$, $z, z’\in Z$.

Then we have
\begin{align*}
rs&=(m\alpha+z)(n\alpha+z’)\\
&=(m\alpha)(n\alpha)+m\alpha z’ + n z\alpha +z z’\\
&=(n\alpha)(m\alpha)+m z’ \alpha +n \alpha z +z’ z\\
&=(n\alpha+z’)(m\alpha+z)\\
&=sr.
\end{align*}

This contradicts $rs\neq sr$, and we conclude that $|Z|\neq p$.


FavoriteLoadingAdd to solve later

Sponsored Links

More from my site

  • Primary Ideals, Prime Ideals, and Radical IdealsPrimary Ideals, Prime Ideals, and Radical Ideals Let $R$ be a commutative ring with unity. A proper ideal $I$ of $R$ is called primary if whenever $ab \in I$ for $a, b\in R$, then either $a\in I$ or $b^n\in I$ for some positive integer $n$. (a) Prove that a prime ideal $P$ of $R$ is primary. (b) If $P$ is a prime ideal and […]
  • Generators of the Augmentation Ideal in a Group RingGenerators of the Augmentation Ideal in a Group Ring Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by \[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\] where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring […]
  • Torsion Submodule, Integral Domain, and Zero DivisorsTorsion Submodule, Integral Domain, and Zero Divisors Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$. The set of torsion elements is denoted \[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\] (a) Prove that if $R$ is an […]
  • There is Exactly One Ring Homomorphism From the Ring of Integers to Any RingThere is Exactly One Ring Homomorphism From the Ring of Integers to Any Ring Let $\Z$ be the ring of integers and let $R$ be a ring with unity. Determine all the ring homomorphisms from $\Z$ to $R$.   Definition. Recall that if $A, B$ are rings with unity then a ring homomorphism $f: A \to B$ is a map […]
  • Three Equivalent Conditions for a Ring to be a FieldThree Equivalent Conditions for a Ring to be a Field Let $R$ be a ring with $1$. Prove that the following three statements are equivalent. The ring $R$ is a field. The only ideals of $R$ are $(0)$ and $R$. Let $S$ be any ring with $1$. Then any ring homomorphism $f:R \to S$ is injective.   Proof. […]
  • The Preimage of Prime ideals are Prime IdealsThe Preimage of Prime ideals are Prime Ideals Let $f: R\to R'$ be a ring homomorphism. Let $P$ be a prime ideal of the ring $R'$. Prove that the preimage $f^{-1}(P)$ is a prime ideal of $R$.   Proof. The preimage of an ideal by a ring homomorphism is an ideal. (See the post "The inverse image of an ideal by […]
  • Ideal Quotient (Colon Ideal) is an IdealIdeal Quotient (Colon Ideal) is an Ideal Let $R$ be a commutative ring. Let $S$ be a subset of $R$ and let $I$ be an ideal of $I$. We define the subset \[(I:S):=\{ a \in R \mid aS\subset I\}.\] Prove that $(I:S)$ is an ideal of $R$. This ideal is called the ideal quotient, or colon ideal.   Proof. Let $a, […]
  • Fundamental Theorem of Finitely Generated Abelian Groups and its applicationFundamental Theorem of Finitely Generated Abelian Groups and its application In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem. Problem. Let $G$ be a finite abelian group of order $n$. If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Ring theory
Problems and solutions of ring theory in abstract algebra
The Polynomial Rings $\Z[x]$ and $\Q[x]$ are Not Isomorphic

Prove that the rings $\Z[x]$ and $\Q[x]$ are not isomoprhic.  

Close