Example of Two Groups and a Subgroup of the Direct Product that is Not of the Form of Direct Product

Group Theory Problems and Solutions in Mathematics

Problem 467

Give an example of two groups $G$ and $H$ and a subgroup $K$ of the direct product $G\times H$ such that $K$ cannot be written as $K=G_1\times H_1$, where $G_1$ and $H_1$ are subgroups of $G$ and $H$, respectively.

 
LoadingAdd to solve later

Sponsored Links

Solution.

Let $G$ be any nontrivial group, and let $G=H$.
(For example, you may take $G=H=\Zmod{2}$.)

Then consider the subset $K$ in the direct product given by
\[K:=\{(g,g) \mid g\in G\} \subset G\times G.\]


We claim that $K$ is a subgroup of $G\times G$.
In fact, we have
\begin{align*}
(g,g)(h,h)=(gh,gh)\in K \text{ and }\\
(g,g)^{-1}=(g^{-1}, g^{-1})\in K
\end{align*}
for any $g, h\in G$.
Thus, $K$ is closed under multiplications and inverses, and hence $K$ is a subgroup of $G\times G$.


Now we show that $K$ is not of the form $G_1\times H_1$ for some subgroups $G_1, H_1$ of $G$.
Assume on the contrary $K=G_1\times H_1$ for some subgroups $G_1, H_1$ of $G$.

Since $G$ is a nontrivial group, there is a nonidentity element $x\in G$.
So $(x,x)\in K$ and $K$ is not the trivial group.
Thus, both $G_1$ and $H_1$ cannot be the trivial group.

Without loss of generality, assume that $G_1$ is nontrivial.
Then $G_1$ contains a nonidentity element $y$.

Since the identity element $e$ is contained in all subgroups, we have
\[(y,e)\in G_1\times H_1.\] However, this element cannot be in $K$ since $y\neq e$, a contradiction.

Hence $K$ is not of the form $G_1\times H_1$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Abelian Group and Direct Product of Its SubgroupsAbelian Group and Direct Product of Its Subgroups Let $G$ be a finite abelian group of order $mn$, where $m$ and $n$ are relatively prime positive integers. Then show that there exists unique subgroups $G_1$ of order $m$ and $G_2$ of order $n$ such that $G\cong G_1 \times G_2$.   Hint. Consider […]
  • Non-Abelian Group of Order $pq$ and its Sylow SubgroupsNon-Abelian Group of Order $pq$ and its Sylow Subgroups Let $G$ be a non-abelian group of order $pq$, where $p, q$ are prime numbers satisfying $q \equiv 1 \pmod p$. Prove that a $q$-Sylow subgroup of $G$ is normal and the number of $p$-Sylow subgroups are $q$.   Hint. Use Sylow's theorem. To review Sylow's theorem, check […]
  • Surjective Group Homomorphism to $\Z$ and Direct Product of Abelian GroupsSurjective Group Homomorphism to $\Z$ and Direct Product of Abelian Groups Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism. Prove that we have an isomorphism of groups: \[G \cong \ker(f)\times \Z.\]   Proof. Since $f:G\to \Z$ is surjective, there exists an element $a\in G$ such […]
  • Eckmann–Hilton Argument: Group Operation is a Group HomomorphismEckmann–Hilton Argument: Group Operation is a Group Homomorphism Let $G$ be a group with the identity element $e$ and suppose that we have a group homomorphism $\phi$ from the direct product $G \times G$ to $G$ satisfying \[\phi(e, g)=g \text{ and } \phi(g, e)=g, \tag{*}\] for any $g\in G$. Let $\mu: G\times G \to G$ be a map defined […]
  • Isomorphism Criterion of Semidirect Product of GroupsIsomorphism Criterion of Semidirect Product of Groups Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism. The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation \[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\] where $a_i […]
  • A Condition that a Commutator Group is a Normal SubgroupA Condition that a Commutator Group is a Normal Subgroup Let $H$ be a normal subgroup of a group $G$. Then show that $N:=[H, G]$ is a subgroup of $H$ and $N \triangleleft G$. Here $[H, G]$ is a subgroup of $G$ generated by commutators $[h,k]:=hkh^{-1}k^{-1}$. In particular, the commutator subgroup $[G, G]$ is a normal subgroup of […]
  • A Simple Abelian Group if and only if the Order is a Prime NumberA Simple Abelian Group if and only if the Order is a Prime Number Let $G$ be a group. (Do not assume that $G$ is a finite group.) Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number.   Definition. A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]
  • If a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal SubgroupIf a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal Subgroup Let $G$ be a finite group. Suppose that $p$ is a prime number that divides the order of $G$. Let $N$ be a normal subgroup of $G$ and let $P$ be a $p$-Sylow subgroup of $G$. Show that if $P$ is normal in $N$, then $P$ is a normal subgroup of $G$.   Hint. It follows from […]

You may also like...

More in Group Theory
Group Theory Problems and Solutions in Mathematics
The Symmetric Group is a Semi-Direct Product of the Alternating Group and a Subgroup $\langle(1,2) \rangle$

Prove that the symmetric group $S_n$, $n\geq 3$ is a semi-direct product of the alternating group $A_n$ and the subgroup...

Close