Explicit Field Isomorphism of Finite Fields

Problems and Solutions in Field Theory in Abstract Algebra

Problem 233

(a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic.

(b) Show that the polynomials $x^3-x+1$ and $x^3-x-1$ are both irreducible polynomials over the finite field $\F_3$.

(c) Exhibit an explicit isomorphism between the splitting fields of $x^3-x+1$ and $x^3-x-1$ over $\F_3$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic

Let $n$ be the degree of $f_1$ and $f_2$.
Since $f_1$ is irreducible over $\F_p$, the quotient field $\F_p[x]/(f_1(x))$ is the finite field of $p^n$ elements.
Similarly, so is $\F_p[x]/(f_2(x))$.

Since a finite field of $p^n$ elements are unique up to isomorphism, these two quotient fields are isomorphic.


Here, we give an explicit isomorphism. The polynomial $f_1(x)$ splits completely in the field $F_{p^n}\cong \F_p[x]/(f_2(x))$, so let $\theta$ be a root of $f_1(x)$ in $\F_p[x]/(f_2(x))$. (Note that $\theta$ is a polynomial.)
Define a map
\[\Phi: \F_p[x] \to \F_p[x]/(f_2(x))\] sending $g(x)\in \F_p[x]$ to $g(\theta)$. The map $\Phi$ is a ring homomorphism.
We want to show that the kernel $\ker(\Phi)=(f_1(x))$.

Since $\Phi(f_1(x))=f_1(\theta)=0$, we have $(f_1(x)) \subset \ker(\Phi)$.


On the other hand, if $g(x)\in \ker(\Phi)$, then we have $g(\theta)=0$.
Since $f_1(x)$ is the minimal polynomial of $\theta$, it follows that $f_1$ divides $g(x)$, and hence $g(x) \in (f_1(x))$.
Therefore we proved $\ker(\Phi)=(f_1(x))$.

By the first isomorphism theorem, we obtain an isomorphism
\[\tilde\Phi: \F_p[x]/(f_1(x)) \xrightarrow{\cong} \F_p[x]/(f_2(x)),\] where $\tilde \Phi$ maps $x$ to $\theta$.

(b) The polynomials $x^3-x+1$ and $x^3-x-1$ are irreducible over $\F_3$

Since these polynomial are of degree $3$, if they are reducible, then it has a root in $\F_3$. Evaluating these polynomials at $x=0,1,2$ shows that they have no roots in $\F_3$. Thus these two polynomial are irreducible over $\F_3$.

(c) Explicit isomorphism between the splitting fields of $x^3-x+1$ and $x^3-x-1$ over $\F_3$

By part (a), the splitting fields
\[ \F_3[x]/(x^3-x+1) \text{ and } \F_3[x]/(x^3-x-1)\] are isomorphic. In the proof of part (a), we gave an explicit isomorphism.
That is, if $\theta$ is a root of $x^3-x+1$ in the field $\F_3[x]/(x^3-x-1)$, then the map sending $x\in \F_3[x]/(x^3-x+1)$ to $\theta \in \F_3[x]/(x^3-x-1)$ gives an isomorphism.

So we want to find a root $\theta$ of $f_1(x):=x^3-x+1$.
Let $\theta=a+bx+cx^2\in \F_3[x]/(x^3-x-1)$.


Then we have
\begin{align*}
&f_1(\theta)=f_1(a+bx+cx^2)\\
&=(a+bx+cx^2)^3-(a+bx+cx^2)+1\\
&=a+bx^3+cx^6-(a+bx+cx^2)+1\\
& \text{(Note that $a^3=a$ in $\F_3$ and similarly for $b$ and $c$.)}\\
&=a+b(x+1)+c(x^2+2x+1)-(a+bx+cx^2)+1\\
&\text{(Note that $x^3=x+1$ in $\F_3[x]/(x^3-x-1)$, and thus $x^6=x^2+2x+1$.)}\\
&=2cx+b+c+1\stackrel{\text{set}}{=}0.
\end{align*}


From this we deduce that $c=0$, $b=2$ gives a root $\theta$.
For example, choosing $a=0$, we have a root $\theta=2x$ of $f_1(x)$.
Therefore the explicit isomorphism is
\[ \Phi:\F_3[x]/(x^3-x+1) \xrightarrow{\cong} \F_3[x]/(x^3-x-1),\] which sends $x$ to $\theta=2x$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Each Element in a Finite Field is the Sum of Two SquaresEach Element in a Finite Field is the Sum of Two Squares Let $F$ be a finite field. Prove that each element in the field $F$ is the sum of two squares in $F$. Proof. Let $x$ be an element in $F$. We want to show that there exists $a, b\in F$ such that \[x=a^2+b^2.\] Since $F$ is a finite field, the characteristic $p$ of the field […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]
  • A Maximal Ideal in the Ring of Continuous Functions and a Quotient RingA Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring Let $R$ be the ring of all continuous functions on the interval $[0, 2]$. Let $I$ be the subset of $R$ defined by \[I:=\{ f(x) \in R \mid f(1)=0\}.\] Then prove that $I$ is an ideal of the ring $R$. Moreover, show that $I$ is maximal and determine […]
  • $(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain.$(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain. Let $R$ be an integral domain. Then prove that the ideal $(x^3-y^2)$ is a prime ideal in the ring $R[x, y]$.   Proof. Consider the ring $R[t]$, where $t$ is a variable. Since $R$ is an integral domain, so is $R[t]$. Define the function $\Psi:R[x,y] \to R[t]$ sending […]
  • The Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of UnityThe Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of Unity Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.   Hint. Consider the field extension $\Q(\sqrt[p]{2}, \zeta)$, where $\zeta$ is a primitive $p$-th root of […]
  • Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse ElementsProve that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements Let $\F_3=\Zmod{3}$ be the finite field of order $3$. Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$. (a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have? (b) […]
  • Galois Group of the Polynomial  $x^p-2$.Galois Group of the Polynomial $x^p-2$. Let $p \in \Z$ be a prime number. Then describe the elements of the Galois group of the polynomial $x^p-2$.   Solution. The roots of the polynomial $x^p-2$ are \[ \sqrt[p]{2}\zeta^k, k=0,1, \dots, p-1\] where $\sqrt[p]{2}$ is a real $p$-th root of $2$ and $\zeta$ […]
  • Polynomial $x^p-x+a$ is Irreducible and Separable Over a Finite FieldPolynomial $x^p-x+a$ is Irreducible and Separable Over a Finite Field Let $p\in \Z$ be a prime number and let $\F_p$ be the field of $p$ elements. For any nonzero element $a\in \F_p$, prove that the polynomial \[f(x)=x^p-x+a\] is irreducible and separable over $F_p$. (Dummit and Foote "Abstract Algebra" Section 13.5 Exercise #5 on […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Field Theory
Galois theory problem and solution
Galois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic Group

Show that $\Q(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, that is, it is a Galois extension of degree $4$ with cyclic...

Close