vector-space

vector-space

LoadingAdd to solve later

Sponsored Links

Vector Space Problems and Solutions


LoadingAdd to solve later

Sponsored Links

More from my site

  • Simple Commutative Relation on MatricesSimple Commutative Relation on Matrices Let $A$ and $B$ are $n \times n$ matrices with real entries. Assume that $A+B$ is invertible. Then show that \[A(A+B)^{-1}B=B(A+B)^{-1}A.\] (University of California, Berkeley Qualifying Exam) Proof. Let $P=A+B$. Then $B=P-A$. Using these, we express the given […]
  • The Existence of an Element in an Abelian Group of Order the Least Common Multiple of Two ElementsThe Existence of an Element in an Abelian Group of Order the Least Common Multiple of Two Elements Let $G$ be an abelian group. Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively. Prove that there exists an element $c$ in $G$ such that the order of $c$ is the least common multiple of $m$ and $n$. Also determine whether the statement is true if $G$ is a […]
  • Prove a Group is Abelian if $(ab)^2=a^2b^2$Prove a Group is Abelian if $(ab)^2=a^2b^2$ Let $G$ be a group. Suppose that \[(ab)^2=a^2b^2\] for any elements $a, b$ in $G$. Prove that $G$ is an abelian group.   Proof. To prove that $G$ is an abelian group, we need \[ab=ba\] for any elements $a, b$ in $G$. By the given […]
  • The Centralizer of a Matrix is a SubspaceThe Centralizer of a Matrix is a Subspace Let $V$ be the vector space of $n \times n$ matrices, and $M \in V$ a fixed matrix. Define \[W = \{ A \in V \mid AM = MA \}.\] The set $W$ here is called the centralizer of $M$ in $V$. Prove that $W$ is a subspace of $V$.   Proof. First we check that the zero […]
  • If a Prime Ideal Contains No Nonzero Zero Divisors, then the Ring is an Integral DomainIf a Prime Ideal Contains No Nonzero Zero Divisors, then the Ring is an Integral Domain Let $R$ be a commutative ring. Suppose that $P$ is a prime ideal of $R$ containing no nonzero zero divisor. Then show that the ring $R$ is an integral domain.   Definitions: zero divisor, integral domain An element $a$ of a commutative ring $R$ is called a zero divisor […]
  • For What Values of $a$, Is the Matrix Nonsingular?For What Values of $a$, Is the Matrix Nonsingular? Determine the values of a real number $a$ such that the matrix \[A=\begin{bmatrix} 3 & 0 & a \\ 2 &3 &0 \\ 0 & 18a & a+1 \end{bmatrix}\] is nonsingular.   Solution. We apply elementary row operations and obtain: \begin{align*} A=\begin{bmatrix} 3 & 0 & a […]
  • Determine Whether the Following Matrix Invertible. If So Find  Its Inverse Matrix.Determine Whether the Following Matrix Invertible. If So Find Its Inverse Matrix. Let A be the matrix \[\begin{bmatrix} 1 & -1 & 0 \\ 0 &1 &-1 \\ 0 & 0 & 1 \end{bmatrix}.\] Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse. (The Ohio State University Linear Algebra […]
  • Inverse Matrix of Positive-Definite Symmetric Matrix is Positive-DefiniteInverse Matrix of Positive-Definite Symmetric Matrix is Positive-Definite Suppose $A$ is a positive definite symmetric $n\times n$ matrix. (a) Prove that $A$ is invertible. (b) Prove that $A^{-1}$ is symmetric. (c) Prove that $A^{-1}$ is positive-definite. (MIT, Linear Algebra Exam Problem)   Proof. (a) Prove that $A$ is […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.