Find a Basis for a Subspace of the Vector Space of $2\times 2$ Matrices

Problems and solutions in Linear Algebra

Problem 152

Let $V$ be the vector space of all $2\times 2$ matrices, and let the subset $S$ of $V$ be defined by $S=\{A_1, A_2, A_3, A_4\}$, where
\begin{align*}
A_1=\begin{bmatrix}
1 & 2 \\
-1 & 3
\end{bmatrix}, \quad
A_2=\begin{bmatrix}
0 & -1 \\
1 & 4
\end{bmatrix}, \quad
A_3=\begin{bmatrix}
-1 & 0 \\
1 & -10
\end{bmatrix}, \quad
A_4=\begin{bmatrix}
3 & 7 \\
-2 & 6
\end{bmatrix}.
\end{align*}
Find a basis of the span $\Span(S)$ consisting of vectors in $S$ and find the dimension of $\Span(S)$.

 
LoadingAdd to solve later

Sponsored Links

Proof.

Let $B=\{E_{11}, E_{12}, E_{21}, E_{22}\}$ be the standard basis for the vector space $V$, where
\[E_{11}=\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix},
E_{12}=\begin{bmatrix}
0 & 1\\
0& 0
\end{bmatrix}, E_{21}=\begin{bmatrix}
0 & 0\\
1& 0
\end{bmatrix}, E_{22}=\begin{bmatrix}
0 & 0\\
0& 1
\end{bmatrix}.\] With respect to the basis $B$, we find the coordinate vectors for $A_1, A_2, A_3, A_4$ as follows.
Since we have
\[A_1=E_{11}+2E_{12}-E_{21}+3E_{22},\] the coordinate vector for $A_1$ is
\[[A_1]_B=\begin{bmatrix}
1 \\
2 \\
-1 \\
3
\end{bmatrix}.\] Similarly, we have
\[[A_2]_B=\begin{bmatrix}
0 \\
-1 \\
1 \\
4
\end{bmatrix}, [A_3]_B=\begin{bmatrix}
-1 \\
0 \\
1 \\
-10
\end{bmatrix},
[A_4]_B=\begin{bmatrix}
3 \\
7 \\
-2 \\
6
\end{bmatrix}.\] To find a basis for $\Span(S)$ among vectors in $S$, we first find a basis for $\Span(T)$ among vectors in
\[T=\{[A_1]_B, [A_2]_B, [A_3]_B, [A_4]_B\}.\] Let form a matrix whose columns are vectors in $T$. That is,
\[\begin{bmatrix}
1 & 0 & -1 & 3 \\
2 &-1 & 0 & 7 \\
-1 & 1 & 1 & -2 \\
3 & 4 & -10 & 6
\end{bmatrix}.\]

We apply the elementary row operations as follows and obtain a reduced row echelon form matrix.
\begin{align*}
\begin{bmatrix}
1 & 0 & -1 & 3 \\
2 &-1 & 0 & 7 \\
-1 & 1 & 1 & -2 \\
3 & 4 & -7 & 6
\end{bmatrix}
\xrightarrow{\substack{R_2-2R_1 \\ R_3+R_1\\ R_4-3R_1}}
\begin{bmatrix}
1 & 0 & -1 & 3 \\
0 &-1 & 2 & 1 \\
0 & 1 & 0 & 1 \\
0 & 4 & -7 & -3
\end{bmatrix}
\xrightarrow{\substack{R_3+R_2 \\ R_4+4R_2}}
\begin{bmatrix}
1 & 0 & -1 & 3 \\
0 &-1 & 2 & 1 \\
0 & 0 & 2 & 2 \\
0 & 0& 1 & 1
\end{bmatrix}\\[6pt] \xrightarrow{\substack{R_1+R_4 \\ R_2-2R_4 \\ R_3-2R_4}}
\begin{bmatrix}
1 & 0 & 0 & 4 \\
0 &-1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0& 1 & 1
\end{bmatrix}
\xrightarrow{\substack{1R_2\\ R_3 \leftrightarrow R_4}}
\begin{bmatrix}
1 & 0 & 0 & 4 \\
0 &1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0& 0 & 0
\end{bmatrix}.
\end{align*}

The the first three columns of the reduced row echelon form contains the leading 1’s.
Thus by, what I call, the leading $1$ method, it follows that
\[\{[A_1]_B, [A_2]_B, [A_3]_B\}\] is a basis for $\Span(T)$.

Therefore, by the correspondence of coordinate vectors, we obtain that
\[\{A_1, A_2, A_3\}\] is a basis of $\Span(S)$.

Since the basis $\{A_1, A_2, A_3\}$ consists of three vectors, the dimension of $\Span(S)$ is $3$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Any Vector is a Linear Combination of Basis Vectors Uniquely

Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that...

Close