# Find a Basis of the Subspace of All Vectors that are Perpendicular to the Columns of the Matrix

## Problem 40

Find a basis for the subspace $W$ of all vectors in $\R^4$ which are perpendicular to the columns of the matrix
$A=\begin{bmatrix} 11 & 12 & 13 & 14 \\ 21 &22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{bmatrix}.$

(Harvard University Exam)

Contents

## Hint.

1. Show that $W=\calN(A^{\trans})$.
2. Find a basis of $\calN(A^{\trans})$ by reducing the matrix $A^{\trans}$.

## Solution.

Let us write $A=[A_1 \, A_2 \, A_3 \, A_4]$, where $A_i$ is the $i$-th column vector of $A$ for $i=1,2,3,4$.
First we claim that a vector $\mathbf{x}\in \R^4$ is perpendicular to all column vectors $A_i$ if and only if $\mathbf{x} \in \calN(A^{\trans})$.
To see this, we compute
\begin{align*}
A^{\trans} \mathbf{x} =\begin{bmatrix}
A_1^{\trans} \\
A_2^{\trans} \\
A_3^{\trans} \\
A_4^{\trans}
\end{bmatrix}\mathbf{x}
=\begin{bmatrix}
A_1^{\trans}\mathbf{x} \\
A_2^{\trans} \mathbf{x}\\
A_3^{\trans} \mathbf{x}\\
A_4^{\trans} \mathbf{x}
\end{bmatrix}.
\end{align*}
From this equality the claim follows immediately.

So we proved that $\calN(A^{\trans}) =W$. From this, we see that $W$ is actually a subspace of $\R^4$.

Thus, we need to find a basis for the null space of the transpose $A^{\trans}$.

We apply elementary row operations to $A^{\trans}$ and obtain a reduced row echelon form
$A^{\trans} \to \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 &1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$ The last two columns correspond to two free variables. Let $s$ and $t$ be free variable.
Then $\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \calN(A^{\trans})$ if and only if $\mathbf{x}$ satisfies
\begin{align*}
x_1 &=s+2t \\
x_2 &=-2s-3t\\
x_3 &=s\\
x_4 &=t,
\end{align*}
equivalently
\begin{align*}
\mathbf{x}=s\begin{bmatrix}
1 \\
-2 \\
1 \\
0
\end{bmatrix}
+t\begin{bmatrix}
2 \\
-3 \\
0 \\
1
\end{bmatrix}.
\end{align*}
Therefore a basis of $W=\calN(A^{\trans})$ is
$\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}.$

Suppose that $A$ is a diagonalizable matrix with characteristic polynomial $f_A(\lambda)=\lambda^2(\lambda-3)(\lambda+2)^3(\lambda-4)^3.$ (a) Find the size of the matrix $A$. (b) Find the...