Find a Condition that a Vector be a Linear Combination

Linear algebra problems and solutions

Problem 312

Let
\[\mathbf{v}=\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}, \qquad \mathbf{v}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix}
2 \\
-1 \\
2
\end{bmatrix}.\] Find the necessary and sufficient condition so that the vector $\mathbf{v}$ is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$.

 
LoadingAdd to solve later

Sponsored Links


We give two solutions.

Solution 1. (Use the range)

The question is equivalent to finding the condition so that the vector $\mathbf{v}$ is in the range of the matrix
\[A=[\mathbf{v}_1, \mathbf{v}_2]=\begin{bmatrix}
1 & 2 \\
2 & -1 \\
0 &2
\end{bmatrix}.\] The vector $\mathbf{v}$ is in the range $\calR(A)$ if and only if the system $A\mathbf{x}=\mathbf{v}$ is consistent.

We reduce the augmented matrix of the system by elementary row operations as follows.
\begin{align*}
[A\mid \mathbf{v}]=\left[\begin{array}{rr|r}
1 & 2 & a \\
2 &-1 &b \\
0 & 2 & c
\end{array}\right] \xrightarrow{R_2-2R_1}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 &-5 &b-2a \\
0 & 2 & c
\end{array}\right]\\[6pt] \xrightarrow{R_2+3R_3}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 &1 &b-2a+3c \\
0 & 2 & c
\end{array}\right]\\
\xrightarrow{R_3-2R_2}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 &1 &b-2a+3c \\
0 & 0 & 4a-2b-5c
\end{array}\right].
\end{align*}
The last matrix is in echelon form and the system is consistent if and only if $4a-2b-5c=0$.
Therefore, the condition that $\mathbf{v}$ be a linear combination of $\mathbf{v}_1, \mathbf{v}_2$ is $4a-2b-5c=0$.

Solution 2. (Use the cross product)

Note that the vectors $\mathbf{v}_1, \mathbf{v}_2$ spans a plane $P$ in $\R^3$.
Thus, the vector $\mathbf{v}$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2$ if and only if $\mathbf{v}$ lies on the plane $P$.

The cross product
\[\mathbf{v}_1\times \mathbf{v}_2=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}\times \begin{bmatrix}
2 \\
-1 \\
2
\end{bmatrix}=
\begin{bmatrix}
\begin{vmatrix}
2 & -1\\
0& 2
\end{vmatrix} \\[10pt] – \begin{vmatrix}
1 & 2\\
0& 2
\end{vmatrix} \\[10pt] \begin{vmatrix}
1 & 2\\
2& -1
\end{vmatrix}
\end{bmatrix}=\begin{bmatrix}
4 \\
-2 \\
-5
\end{bmatrix}\] is perpendicular to the plane $P$.

Therefore, the vector $\mathbf{v}$ is on the plane if and only if the dot (inner) product
\[\mathbf{v}\cdot (\mathbf{v}_1\times \mathbf{v}_2)=0.\] Namely,
\[\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}\cdot \begin{bmatrix}
4 \\
-2 \\
-5
\end{bmatrix}=4a-2b-5c=0,\] and we obtained the same condition as in Solution 1.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
Intersection of Two Null Spaces is Contained in Null Space of Sum of Two Matrices

Let $A$ and $B$ be $n\times n$ matrices. Then prove that \[\calN(A)\cap \calN(B) \subset \calN(A+B),\] where $\calN(A)$ is the null...

Close