Find a General Formula of a Linear Transformation From $\R^2$ to $\R^3$

Ohio State University exam problems and solutions in mathematics

Problem 353

Suppose that $T: \R^2 \to \R^3$ is a linear transformation satisfying
\[T\left(\, \begin{bmatrix}
1 \\
2
\end{bmatrix}\,\right)=\begin{bmatrix}
3 \\
4 \\
5
\end{bmatrix} \text{ and } T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}.\] Find a general formula for
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right).\]

(The Ohio State University, Linear Algebra Math 2568 Exam Problem)

 
LoadingAdd to solve later

Sponsored Links


We give two solutions.

Solution 1. (Using linear combination)

Note that the set $B:=\left\{\, \begin{bmatrix}
1 \\
2
\end{bmatrix}, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right\}$ form a basis of the vector space $\R^2$.


To find a general formula, we first express the vector $\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$ as a linear combination of the basis vectors in $B$.
Namely, we find scalars $c_1, c_2$ satisfying
\[\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}=c_1\begin{bmatrix}
1 \\
2
\end{bmatrix}+c_2\begin{bmatrix}
0 \\
1
\end{bmatrix}.\] This can be written as the matrix equation
\[\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}=P\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}, \tag{*}\] where we have put
\[P=\begin{bmatrix}
1 & 0\\
2& 1
\end{bmatrix}.\] The $2 \times 2$ matrix $P$ is invertible as its determinant is $\det(P)=(1)(1)-(0)(2)=1\neq 0$, and the inverse matrix is given by
\[P^{-1}=\begin{bmatrix}
1 & 0\\
-2& 1
\end{bmatrix}.\]


Then we multiply $P^{-1}$ on the left of (*) and obtain
\begin{align*}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}&=P^{-1}\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
1 & 0\\
-2& 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
x_1 \\
-2x_1+x_2
\end{bmatrix}.
\end{align*}

Thus, we have determined the scalars
\[c_1=x_1 \text{ and } c_2=-2x_1+x_2,\] and the linear combination becomes
\[\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}=x_1\begin{bmatrix}
1 \\
2
\end{bmatrix}+(-2x_1+x_2)\begin{bmatrix}
0 \\
1
\end{bmatrix}.\]


Now we compute $T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right)$ as follows.
\begin{align*}
T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right) &=T\left(\, x_1\begin{bmatrix}
1 \\
2
\end{bmatrix}+(-2x_1+x_2)\begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)\\[6pt] &=x_1T\left(\, \begin{bmatrix}
1 \\
2
\end{bmatrix} \,\right)+(-2x_1+x_2)T\left(\,\begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right) && \text{by linearity of $T$}\\[6pt] &=x_1\begin{bmatrix}
3 \\
4 \\
5
\end{bmatrix}+(-2x_1+x_2)\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
3x_1 \\
4x_1 \\
3x_1 + x_2
\end{bmatrix}.
\end{align*}
Therefore, the general formula is given by
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right)=\begin{bmatrix}
3x_1 \\
4x_1 \\
3x_1 + x_2
\end{bmatrix}.\]  

Solution 2. (Using the matrix representation of the linear transformation)

The second solution uses the matrix representation of the linear transformation $T$.
Let $A$ be the matrix for the linear transformation $T$.

Then by definition, we have
\[T(\mathbf{x})=A\mathbf{x}, \tag{**}\] for every $\mathbf{x}\in \R^2$.
(Note that the size of $A$ is $3\times 2$ because $T:\R^2\to \R^3$.)


We determine the matrix $A$ as follows.
We compute
\begin{align*}
A\begin{bmatrix}
1 & 0\\
2& 1
\end{bmatrix}&=\begin{bmatrix}
A\begin{bmatrix}
1 \\
2
\end{bmatrix} & A \begin{bmatrix}
0 \\
1
\end{bmatrix}
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
T\left(\, \begin{bmatrix}
1 \\
2
\end{bmatrix} \,\right) & T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)
\end{bmatrix} && \text{by (**)} \\[6pt] &=\begin{bmatrix}
3 & 0 \\
4 & 0 \\
5 & 1
\end{bmatrix}.
\end{align*}

The $2\times 2$ matrix on the left hand side is invertible, and the inverse is
\[\begin{bmatrix}
1 & 0\\
2& 1
\end{bmatrix}^{-1}
=\begin{bmatrix}
1 & 0\\
-2& 1
\end{bmatrix}.\] (Remark: This is the matrix $P$ in the first solution.)

Multiplying by this inverse matrix on the right, we obtain
\begin{align*}
A&=\begin{bmatrix}
3 & 0 \\
4 & 0 \\
5 &1
\end{bmatrix}\begin{bmatrix}
1 & 0\\
2& 1
\end{bmatrix}^{-1}\\[6pt] &=\begin{bmatrix}
3 & 0 \\
4 & 0 \\
5 &1
\end{bmatrix}\begin{bmatrix}
1 & 0\\
-2& 1
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
3 & 0\\
4& 0 \\
3 & 1
\end{bmatrix}.
\end{align*}


Now that we have obtained the matrix $A$ for $T$, we can find the general formula as follows.
We have
\begin{align*}
T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right)&=A\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} && \text{by (**)}\\[6pt] &=\begin{bmatrix}
3 & 0\\
4& 0 \\
3 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
3x_1 \\
4x_1 \\
3x_1 + x_2
\end{bmatrix}.
\end{align*}


In summary, the general formula is
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right)=\begin{bmatrix}
3x_1 \\
4x_1 \\
3x_1 + x_2
\end{bmatrix}.\]

Related Question.

Here are similar problems about linear transformations


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Hyperplane in $n$-Dimensional Space Through Origin is a Subspace

A hyperplane in $n$-dimensional vector space $\R^n$ is defined to be the set of vectors \[\begin{bmatrix} x_1 \\ x_2 \\...

Close