Find a Matrix that Maps Given Vectors to Given Vectors

Problems and solutions in Linear Algebra

Problem 44

Suppose that a real matrix $A$ maps each of the following vectors
\[\mathbf{x}_1=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_2=\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \] into the vectors
\[\mathbf{y}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \mathbf{y}_2=\begin{bmatrix}
-1 \\
0 \\
3
\end{bmatrix}, \mathbf{y}_3=\begin{bmatrix}
3 \\
1 \\
1
\end{bmatrix},\] respectively.
That is, $A\mathbf{x}_i=\mathbf{y}_i$ for $i=1,2,3$.
Find the matrix $A$.

(Kyoto University Exam)
LoadingAdd to solve later

Sponsored Links


We will give two solutions.

Solution 1

By the condition that $A\mathbf{x}_i=\mathbf{y}_i$, we have a matrix equality $A[\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3]=[\mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3]$.
Explicitly we have
\[ A\begin{bmatrix}
1 & 0 & 0 \\
1 &1 &0 \\
1 & 1 & 1
\end{bmatrix}
=\begin{bmatrix}
1 & -1 & 3 \\
2 &0 &1 \\
0 & 3 & 1
\end{bmatrix}.\] To find the matrix $A$, we find the inverse matrix of $\begin{bmatrix}
1 & 0 & 0 \\
1 &1 &0 \\
1 & 1 & 1
\end{bmatrix}$ and multiply on the right by it.

We use Gauss-Jordan elimination to transform the augmented matrix $[A|I]$ into $[I|A^{-1}]$.
We have
\begin{align*}
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 &0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 \\
\end{array}\right] \xrightarrow[R_3-R_1]{R_2-R_1}
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 &0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1 \\
\end{array}\right]\\
\xrightarrow{R_3-R_2}
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 &0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & 1 \\
\end{array}\right].
\end{align*}

Thus the inverse matrix is
\[\begin{bmatrix}
1 &0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1 \\
\end{bmatrix}.\] Hence we have
\begin{align*}
A &=\begin{bmatrix}
1 & -1 & 3 \\
2 &0 &1 \\
0 & 3 & 1
\end{bmatrix}
\begin{bmatrix}
1 &0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1 \\
\end{bmatrix}
=
\begin{bmatrix}
2 & -4 & 3 \\
2 &-1 &1 \\
-3 & 2 & 1
\end{bmatrix}.
\end{align*}

Solution 2

Note that in general $A$ is a matrix whose $i$-th column is the image of the $i$-th unit vector $\mathbf{e}_i$.
For given vectors $\mathbf{x}_i$, it is easy to see that
\begin{align*}
\mathbf{e}_1 &=\mathbf{x}_1-\mathbf{x}_2 \\
\mathbf{e}_2 &=\mathbf{x}_2-\mathbf{x}_3 \\
\mathbf{e}_3 &=\mathbf{x}_3.
\end{align*}

Thus we have
\begin{align*}
A\mathbf{e}_1=A\mathbf{x}_1-A\mathbf{x}_2=\mathbf{y}_1-\mathbf{y}_2=\begin{bmatrix}
2 \\
2 \\
-3
\end{bmatrix}.
\end{align*}
Similarly, we obtain
\begin{align*}
A\mathbf{e}_2=\begin{bmatrix}
-4 \\
-1 \\
2
\end{bmatrix},
\text{ and }
A\mathbf{e}_3=\begin{bmatrix}
3 \\
1 \\
1
\end{bmatrix}.
\end{align*}

Therefore we have
\[A=[A\mathbf{e}_1 \, A\mathbf{e}_2 \, A\mathbf{e}_3]= \begin{bmatrix}
2 & -4 & 3 \\
2 &-1 &1 \\
-3 & 2 & 1
\end{bmatrix}.\] Of course, this agrees with the answer of Solution 1.

Comment.

This is a typical problem in linear algebra, but if you noticed the second approach then you could save time in the exam.

Once you obtained the matrix $A$, you can check whether you computed right by calculating $A\mathbf{x}_i$ with your $A$ and see if it is equal to the vector $\mathbf{y}_i$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

2 Responses

  1. Bastien Girschig says:

    Hi! Thanks for the nice problem and explanations, however I think there is a mistake in solution 2.

    Shouldn’t it say:
    e1=y1−y2
    e2=y2−y3
    e3=y3

    instead of:
    e1=x1−x2
    e2=x2−x3
    e3=x3

    • Yu says:

      Dear Bastien Girschig,

      I rechecked the solution and it is correct. Let me clarify here.
      Since $\mathbf{x}_1=\begin{bmatrix}
      1 \\
      1 \\
      1
      \end{bmatrix}, \mathbf{x}_2=\begin{bmatrix}
      0 \\
      1 \\
      1
      \end{bmatrix}$ and $\mathbf{e}_1 = \begin{bmatrix}
      1 \\
      0 \\
      0
      \end{bmatrix}$, we have
      \[\mathbf{e}_1 = \begin{bmatrix}
      1 \\
      0 \\
      0
      \end{bmatrix} = \begin{bmatrix}
      1 \\
      1 \\
      1
      \end{bmatrix} –
      \begin{bmatrix}
      0 \\
      1 \\
      1
      \end{bmatrix} =\mathbf{x}_1 = \mathbf{x}_2.\]
      The rest are similar. I hope this helps.

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Tokyo University Linear Algebra Exam Problems and Solutions
Find All Matrices Satisfying a Given Relation

Let $a$ and $b$ be two distinct positive real numbers. Define matrices \[A:=\begin{bmatrix} 0 & a\\ a & 0 \end{bmatrix},...

Close