Find a Polynomial Satisfying the Given Conditions on Derivatives

Linear Algebra Problems and Solutions

Problem 87

Find a cubic polynomial
\[p(x)=a+bx+cx^2+dx^3\] such that $p(1)=1, p'(1)=5, p(-1)=3$, and $ p'(-1)=1$.

  LoadingAdd to solve later

Sponsored Links

Solution.

By differentiating $p(x)$, we obtain
\[p'(x)=b+2cx+3dx^2.\] Thus the given conditions are
\begin{align*}
p(1)&=a+b+c+d=1\\
p'(1)&=b+2c+3d=5\\
p(-1)&=a-b+c-d=3\\
p'(-1)&=b-2c+3d=1.
\end{align*}

We want to solve these four equations for $a,b,c,d$. So $a,b,c,d$ are unknowns and we regard the conditions as a system of four linear equations.
We solve the system using Gauss-Jordan elimination.


The augmented matrix for the system is
\[\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 &1 \\
0 & 1 & 2 & 3 & 5 \\
1 & -1 & 1 & -1 & 3 \\
0 & 1 & -2 & 3 & 1 \\
\end{array}\right] \]

We apply the elementary row operations as follows.
\begin{align*}
&\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 &1 \\
0 & 1 & 2 & 3 & 5 \\
1 & -1 & 1 & -1 & 3 \\
0 & 1 & -2 & 3 & 1 \\
\end{array}\right] \xrightarrow{R_3-R_1}
\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 &1 \\
0 & 1 & 2 & 3 & 5 \\
0 & -2 & 0 & -2 & 2 \\
0 & 1 & -2 & 3 & 1 \\
\end{array}\right] \xrightarrow{\substack{R_1-R_2 \\ R_3+2R_2\\R_4-R_2}}\\[6pt] &\left[\begin{array}{rrrr|r}
1 & 0& -1 & -2 &-4 \\
0 & 1 & 2 & 3 & 5 \\
0 & 0 & 4 & 4 & 12 \\
0 & 0 & -4 & 0 & -4 \\
\end{array}\right] \xrightarrow[\frac{-1}{4}R_4]{\frac{1}{4}R_3}
\left[\begin{array}{rrrr|r}
1 & 0& -1 & -2 &-4 \\
0 & 1 & 2 & 3 & 5 \\
0 & 0 & 1 & 1 & 3 \\
0 & 0 & 1 & 0& 1 \\
\end{array}\right] \xrightarrow{\substack{R_1+R_4 \\ R_2-2R_4\\R_3-R_4}}\\[6pt] &\left[\begin{array}{rrrr|r}
1 & 0& 0 & -2 &-3 \\
0 & 1 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 1 & 0& 1 \\
\end{array}\right] \xrightarrow{R_3 \leftrightarrow R_4}
\left[\begin{array}{rrrr|r}
1 & 0& 0 & -2 &-3 \\
0 & 1 & 0 & 3 & 3 \\
0 & 0 & 1 & 0& 1 \\
0 & 0 & 0 & 1 & 2 \\
\end{array}\right]\\[6pt] & \xrightarrow{\substack{R_1+2R_4 \\ R_2-3R_4}}
\left[\begin{array}{rrrr|r}
1 & 0& 0 & 0 & 1 \\
0 & 1 & 0 & 0 & -3 \\
0 & 0 & 1 & 0& 1 \\
0 & 0 & 0 & 1 & 2 \\
\end{array}\right].
\end{align*}

The last matrix is in reduced row echelon form. Thus the solution to the system is
\[a=1, b=-3, c=1, d=2.\] Therefore, the polynomial is
\[p(x)=1-3x+x^2+2x^3.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Introduction to Linear Algebra at the Ohio State University quiz problems and solutions
Quiz: Linear Equations and Matrix Entreis

Do the following quiz about Linear Equations Matrix entries.  

Close