Find All Matrices $B$ that Commutes With a Given Matrix $A$: $AB=BA$

Linear algebra problems and solutions

Problem 272

Let
\[A=\begin{bmatrix}
1 & 3\\
2& 4
\end{bmatrix}.\] Then

(a) Find all matrices
\[B=\begin{bmatrix}
x & y\\
z& w
\end{bmatrix}\] such that $AB=BA$.

(b) Use the results of part (a) to exhibit $2\times 2$ matrices $B$ and $C$ such that
\[AB=BA \text{ and } AC \neq CA.\]

 
LoadingAdd to solve later

Sponsored Links


Solution.

Find all matrices $B$ such that $AB=BA$

Since we want to find $B$ such that $AB=BA$, we need to find $x, y, z, w$ satisfying
\[\begin{bmatrix}
1 & 3\\
2& 4
\end{bmatrix}\begin{bmatrix}
x & y\\
z& w
\end{bmatrix}=\begin{bmatrix}
x & y\\
z& w
\end{bmatrix}\begin{bmatrix}
1 & 3\\
2& 4
\end{bmatrix}.\]

Comparing entries, we have the following system of linear equations.
\begin{align*}
x+3z&=x+2y\\
y+3w&=3x+4y\\
2x+4z&=z+2w\\
2y+4w&=3z+4w.
\end{align*}

Simplifying this, we obtain
\begin{align*}
2y-3z &=0\\
3x+3y-3w &=0\\
2x+3z-2w &=0\\
2y-3z &=0.
\end{align*}

Note that the first and the last equations are identical. So we omit the first equation from our consideration.

To solve this system, we use the Gauss-Jordan elimination method. Namely we form the augmented matrix of this system and apply elementary row operations as follows.
\begin{align*}
\left[\begin{array}{rrrr|r}
3 & 3 & 0 & -3 &0 \\
2 & 0 & 3 & -2 & 0 \\
0 & 2 & -3 & 0 & 0
\end{array}\right] \xrightarrow{\frac{1}{3}R_1}
\left[\begin{array}{rrrr|r}
1 & 1 & 0 & -1 &0 \\
2 & 0 & 3 & -2 & 0 \\
0 & 2 & -3 & 0 & 0
\end{array}\right] \xrightarrow{R_2-2R_1}\\[10pt] \left[\begin{array}{rrrr|r}
1 & 1 & 0 & -1 &0 \\
0 & -2 & 3 & 0 & 0 \\
0 & 2 & -3 & 0 & 0
\end{array}\right] \xrightarrow{\substack{R_1+\frac{1}{2}R_2 \\ R_2+R_3}}
\left[\begin{array}{rrrr|r}
1 & 0 & 3/2 & -1 &0 \\
0 & -2 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\\[10pt] \xrightarrow{-\frac{1}{2}R_2}
\left[\begin{array}{rrrr|r}
1 & 0 & 3/2 & -1 &0 \\
0 & 1 & -3/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right].
\end{align*}

The last matrix is in reduced row echelon form. From this, we obtain the general solution
\begin{align*}
x&=-\frac{3}{2}z+w\\
y&=\frac{3}{2}z,
\end{align*}
where $z$ and $w$ are free variables.

Therefore the matrix $B$ such that $AB=BA$ must be
\begin{align*}
B&=\begin{bmatrix}
-\frac{3}{2}z+w & \frac{3}{2}z\\
z& w
\end{bmatrix}\\
&=z\begin{bmatrix}
-\frac{3}{2} & \frac{3}{2}\\
1& 0
\end{bmatrix}
+w
\begin{bmatrix}
1 & 0\\
0& 1
\end{bmatrix}
\end{align*}
for any $z$ and $w$.

(b) Find matrices $B, C$ such that $AB=BA$, $AC\neq CA$

By part (a), if
\[B=z\begin{bmatrix}
-\frac{3}{2} & \frac{3}{2}\\
1& 0
\end{bmatrix}
+w
\begin{bmatrix}
1 & 0\\
0& 1
\end{bmatrix}\] for some $z, w$, then we have $AB=BA$.

For example, let $z=2, w=0$. Then the matrix
\[B=\begin{bmatrix}
-3 & 3\\
2& 0
\end{bmatrix}\] satisfies $AB=BA$.

To find a matrix $C$ such that $AC \neq CA$, the matrix $C$ must not be of the form of the formula of $B$.

For example, let
\[C=\begin{bmatrix}
0 & 0\\
1& 0
\end{bmatrix}.\] You may directly check that $AC\neq CA$.

Or, we can show that $C$ is never be the matrix of the form
\[\begin{bmatrix}
-\frac{3}{2}z+w & \frac{3}{2}z\\
z& w
\end{bmatrix}.\]

To see this, compare $(1,2)$ and $(2,1)$ entries. There is no $z$ such that
\[\frac{3}{2}z=0 \text{ and } z=1.\] (This is how I found the matrix $C$ as above.)


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
If a Matrix $A$ is Singular, There Exists Nonzero $B$ such that the Product $AB$ is the Zero Matrix

Let $A$ be an $n\times n$ singular matrix. Then prove that there exists a nonzero $n\times n$ matrix $B$ such...

Close