Find All the Eigenvalues and Eigenvectors of the 6 by 6 Matrix

Find Eigenvalues and Eigenvectors. MIT Linear Algebra homework problem and solution

Problem 400

Find all the eigenvalues and eigenvectors of the matrix
\[A=\begin{bmatrix}
10001 & 3 & 5 & 7 &9 & 11 \\
1 & 10003 & 5 & 7 & 9 & 11 \\
1 & 3 & 10005 & 7 & 9 & 11 \\
1 & 3 & 5 & 10007 & 9 & 11 \\
1 &3 & 5 & 7 & 10009 & 11 \\
1 &3 & 5 & 7 & 9 & 10011
\end{bmatrix}.\]

(MIT, Linear Algebra Homework Problem)
 
LoadingAdd to solve later

Sponsored Links

Solution.

Let
\[B=A-10000I,\] where $I$ is the $6 \times 6$ identity matrix. That is, we have
\[B=\begin{bmatrix}
1 & 3 & 5 & 7 &9 & 11 \\
1 & 3 & 5 & 7 &9 & 11 \\
1 & 3 & 5 & 7 &9 & 11 \\
1 & 3 & 5 & 7 &9 & 11 \\
1 & 3 & 5 & 7 &9 & 11 \\
1 & 3 & 5 & 7 &9 & 11 \\
\end{bmatrix}.\]

Since all the rows are the same, the matrix $B$ is singular and hence $\lambda=0$ is an eigenvalue of $B$.
Let us determine the geometric multiplicity of $\lambda=0$ (namely, the dimension of the null space of $B$).

We apply elementary row operations to $B$ and obtain
\begin{align*}
B\xrightarrow{\text{elementary row operations}}
\begin{bmatrix}
1 & 3 & 5 & 7 &9 & 11 \\
0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0\\
\end{bmatrix}.
\end{align*}
Thus, if $B\mathbf{x}=\mathbf{0}$, then we have
\[x_1=-3x_2-5x_3-7x_4-9x_5-11x_6.\]

It follows from this that basis vectors of the eigenspace $E_0=\calN(B)$ are
\[\begin{bmatrix}
-3 \\
1 \\
0 \\
0 \\
0\\
0
\end{bmatrix}, \begin{bmatrix}
-5 \\
0 \\
1 \\
0 \\
0\\
0
\end{bmatrix}, \begin{bmatrix}
-7 \\
0 \\
0 \\
1 \\
0\\
0
\end{bmatrix}, \begin{bmatrix}
-9 \\
0 \\
0 \\
0 \\
1\\
0
\end{bmatrix}, \begin{bmatrix}
-11 \\
0 \\
0 \\
0 \\
0\\
1
\end{bmatrix},\] and hence the geometric multiplicity corresponding to $\lambda=0$ is $5$.

By inspection, we see that
\[B\mathbf{v}=36\mathbf{v},\] where
\[\mathbf{v}=\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1\\
1
\end{bmatrix}.\] Thus, it yields that $\lambda=36$ is an eigenvalue of $B$ and $\mathbf{v}$ is a corresponding eigenvector.


Recall that the algebraic multiplicity of an eigenvalue is greater than or equal to the geometric multiplicity.

Also the sum of algebraic multiplicities of all eigenvalues of $B$ is equal to $6$ since $B$ is a $6\times 6$ matrix.

It follows from this observation that we determine that the algebraic multiplicity of $\lambda=0$ is $5$ and the algebraic and geometric multiplicities of $\lambda=36$ are both $1$.
Hence the vector $\mathbf{v}$ form a basis of the eigenspace $E_{36}$.


Now that we have determined eigenvalues and eigenvectors of $B$, we can deduce those of $A$ as follows.

In general, if $A=B+cI$, then the eigenvalues of $A$ are $\lambda+c$, where $\lambda$ are eigenvalues of $B$.
The eigenvectors for $A$ corresponding to $\lambda+c$ are exactly the eigenvectors for $B$ corresponding $\lambda$.
(See the post “Eigenvalues and algebraic/geometric multiplicities of matrix $A+cI$” for a proof.)


In the current problem, we have $A=B+10000I$, and thus $c=10000$.
Therefore, the eigenvalues of $A$ are $10000, 10036$.
Eigenvectors corresponding to $10000$ are
\[x_2\begin{bmatrix}
-3 \\
1 \\
0 \\
0 \\
0\\
0
\end{bmatrix}+x_3\begin{bmatrix}
-5 \\
0 \\
1 \\
0 \\
0\\
0
\end{bmatrix}+x_4\begin{bmatrix}
-7 \\
0 \\
0 \\
1 \\
0\\
0
\end{bmatrix}+x_5\begin{bmatrix}
-9 \\
0 \\
0 \\
0 \\
1\\
0
\end{bmatrix}+x_6\begin{bmatrix}
-11 \\
0 \\
0 \\
0 \\
0\\
1
\end{bmatrix},\] where $(x_2, x_3, x_4, x_5, x_6)\neq (0, 0, 0, 0, 0, 0)$.

The eigenvector corresponding to $10036$ is
\[a\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1\\
1
\end{bmatrix},\] where $a$ is any nonzero scalar.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
MIT Linear Algebra Exam problems and solutions
Inverse Matrix of Positive-Definite Symmetric Matrix is Positive-Definite

Suppose $A$ is a positive definite symmetric $n\times n$ matrix. (a) Prove that $A$ is invertible. (b) Prove that $A^{-1}$...

Close