find-eigenvalues-eigenvectors

LoadingAdd to solve later

Sponsored Links

Find Eigenvalues and Eigenvectors. MIT Linear Algebra homework problem and solution


LoadingAdd to solve later

Sponsored Links

More from my site

  • Eigenvalues of Real Skew-Symmetric Matrix are Zero or Purely Imaginary and the Rank is EvenEigenvalues of Real Skew-Symmetric Matrix are Zero or Purely Imaginary and the Rank is Even Let $A$ be a real skew-symmetric matrix, that is, $A^{\trans}=-A$. Then prove the following statements. (a) Each eigenvalue of the real skew-symmetric matrix $A$ is either $0$ or a purely imaginary number. (b) The rank of $A$ is even.   Proof. (a) Each […]
  • Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible.Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible. Let \[A=\begin{bmatrix} 1 & 3 & 3 \\ -3 &-5 &-3 \\ 3 & 3 & 1 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 4 & 3 \\ -4 &-6 &-3 \\ 3 & 3 & 1 \end{bmatrix}.\] For this problem, you may use the fact that both matrices have the same characteristic […]
  • Construction of a Symmetric Matrix whose Inverse Matrix is ItselfConstruction of a Symmetric Matrix whose Inverse Matrix is Itself Let $\mathbf{v}$ be a nonzero vector in $\R^n$. Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$. Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by \[A=I-a\mathbf{v}\mathbf{v}^{\trans},\] where […]
  • The Center of a p-Group is Not TrivialThe Center of a p-Group is Not Trivial Let $G$ be a group of order $|G|=p^n$ for some $n \in \N$. (Such a group is called a $p$-group.) Show that the center $Z(G)$ of the group $G$ is not trivial. Hint. Use the class equation. Proof. If $G=Z(G)$, then the statement is true. So suppose that $G\neq […]
  • 7 Problems on Skew-Symmetric Matrices7 Problems on Skew-Symmetric Matrices Let $A$ and $B$ be $n\times n$ skew-symmetric matrices. Namely $A^{\trans}=-A$ and $B^{\trans}=-B$. (a) Prove that $A+B$ is skew-symmetric. (b) Prove that $cA$ is skew-symmetric for any scalar $c$. (c) Let $P$ be an $m\times n$ matrix. Prove that $P^{\trans}AP$ is […]
  • Eigenvalues of a Stochastic Matrix is Always Less than or Equal to 1Eigenvalues of a Stochastic Matrix is Always Less than or Equal to 1 Let $A=(a_{ij})$ be an $n \times n$ matrix. We say that $A=(a_{ij})$ is a right stochastic matrix if each entry $a_{ij}$ is nonnegative and the sum of the entries of each row is $1$. That is, we have \[a_{ij}\geq 0 \quad \text{ and } \quad a_{i1}+a_{i2}+\cdots+a_{in}=1\] for $1 […]
  • Exponential Functions are Linearly IndependentExponential Functions are Linearly Independent Let $c_1, c_2,\dots, c_n$ be mutually distinct real numbers. Show that exponential functions \[e^{c_1x}, e^{c_2x}, \dots, e^{c_nx}\] are linearly independent over $\R$. Hint. Consider a linear combination \[a_1 e^{c_1 x}+a_2 e^{c_2x}+\cdots + a_ne^{c_nx}=0.\] […]
  • Similar Matrices Have the Same EigenvaluesSimilar Matrices Have the Same Eigenvalues Show that if $A$ and $B$ are similar matrices, then they have the same eigenvalues and their algebraic multiplicities are the same. Proof. We prove that $A$ and $B$ have the same characteristic polynomial. Then the result follows immediately since eigenvalues and algebraic […]

Leave a Reply

Your email address will not be published. Required fields are marked *