Find All Values of $x$ so that a Matrix is Singular

Linear algebra problems and solutions

Problem 168

Let
\[A=\begin{bmatrix}
1 & -x & 0 & 0 \\
0 &1 & -x & 0 \\
0 & 0 & 1 & -x \\
0 & 1 & 0 & -1
\end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.

 
LoadingAdd to solve later

Sponsored Links


Hint.

Use the fact that a matrix is singular if and only if the determinant of the matrix is zero.

To compute the determinant, use a cofactor expansion.

Solution.

We use the fact that a matrix is singular if and only if the determinant of the matrix is zero.

We compute the determinant of $A$ as follows.
\begin{align*}
&\det(A)= \begin{vmatrix}
1 & -x & 0 & 0 \\
0 &1 & -x & 0 \\
0 & 0 & 1 & -x \\
0 & 1 & 0 & -1
\end{vmatrix}\\[6pt] &=\begin{vmatrix}
1 & -x & 0 \\
0 &1 &-x \\
1 & 0 & -1
\end{vmatrix}
-0\begin{vmatrix}
-x & 0 & 0 \\
0 &1 &-x \\
1 & 0 & -1
\end{vmatrix}+0\begin{vmatrix}
-x & 0 & 0 \\
1 &-x &0 \\
1 & 0 & -1
\end{vmatrix}+0\begin{vmatrix}
-x & 0 & 0 \\
1 &-x &0 \\
0 & 1 & -x
\end{vmatrix}
\\[6pt] & \text{ by the first column cofactor expansion}\\[6pt] &=\begin{vmatrix}
1 & -x & 0 \\
0 &1 &-x \\
1 & 0 & -1
\end{vmatrix}\\[6pt] &=\begin{vmatrix}
1 & -x\\
0& -1
\end{vmatrix}-0\begin{vmatrix}
-x & 0\\
0& -1
\end{vmatrix}+\begin{vmatrix}
-x & 0\\
1& -x
\end{vmatrix}\\[6pt] & \text{ by the first column cofactor expansion}\\[6pt] &=-1+x^2.
\end{align*}

Therefore we have $\det(A)=x^2-1$. Thus $\det(A)=0$ if and only if $x=\pm 1$.
We conclude that the matrix $A$ is singular if and only if $x=\pm 1$.

Comment.

You may use the rule of Sarrus to compute the $3\times 3$ determinant instead of the cofactor expansion if you like so.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Compute Determinant of a Matrix Using Linearly Independent VectorsCompute Determinant of a Matrix Using Linearly Independent Vectors Let $A$ be a $3 \times 3$ matrix. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have \[A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 […]
  • Find Values of $h$ so that the Given Vectors are Linearly IndependentFind Values of $h$ so that the Given Vectors are Linearly Independent Find the value(s) of $h$ for which the following set of vectors \[\left \{ \mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2h \\ 3h+1 […]
  • Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$ Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities. What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix? (The Ohio State University, Linear Algebra Final Exam […]
  • Find All the Values of $x$ so that a Given $3\times 3$ Matrix is SingularFind All the Values of $x$ so that a Given $3\times 3$ Matrix is Singular Find all the values of $x$ so that the following matrix $A$ is a singular matrix. \[A=\begin{bmatrix} x & x^2 & 1 \\ 2 &3 &1 \\ 0 & -1 & 1 \end{bmatrix}.\]   Hint. Use the fact that a matrix is singular if and only if its determinant is […]
  • How to Use the Cayley-Hamilton Theorem to Find the Inverse MatrixHow to Use the Cayley-Hamilton Theorem to Find the Inverse Matrix Find the inverse matrix of the $3\times 3$ matrix \[A=\begin{bmatrix} 7 & 2 & -2 \\ -6 &-1 &2 \\ 6 & 2 & -1 \end{bmatrix}\] using the Cayley-Hamilton theorem.   Solution. To apply the Cayley-Hamilton theorem, we first determine the characteristic […]
  • Properties of Nonsingular and Singular MatricesProperties of Nonsingular and Singular Matrices An $n \times n$ matrix $A$ is called nonsingular if the only solution of the equation $A \mathbf{x}=\mathbf{0}$ is the zero vector $\mathbf{x}=\mathbf{0}$. Otherwise $A$ is called singular. (a) Show that if $A$ and $B$ are $n\times n$ nonsingular matrices, then the product $AB$ is […]
  • Maximize the Dimension of the Null Space of $A-aI$Maximize the Dimension of the Null Space of $A-aI$ Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.\] Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]
  • Nilpotent Matrices and Non-Singularity of Such MatricesNilpotent Matrices and Non-Singularity of Such Matrices Let $A$ be an $n \times n$ nilpotent matrix, that is, $A^m=O$ for some positive integer $m$, where $O$ is the $n \times n$ zero matrix. Prove that $A$ is a singular matrix and also prove that $I-A, I+A$ are both nonsingular matrices, where $I$ is the $n\times n$ identity […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Subspace of Skew-Symmetric Matrices and Its Dimension

Let $V$ be the vector space of all $2\times 2$ matrices. Let $W$ be a subset of $V$ consisting of...

Close