# Find all Values of x such that the Given Matrix is Invertible

## Problem 32

Let
$A=\begin{bmatrix} 2 & 0 & 10 \\ 0 &7+x &-3 \\ 0 & 4 & x \end{bmatrix}.$ Find all values of $x$ such that $A$ is invertible.

(Stanford University Linear Algebra Exam)

## Hint.

Calculate the determinant of the matrix $A$.

## Solution.

A matrix is invertible if and only if its determinant is non-zero.
So we first calculate the determinant of the matrix $A$.

By the first column cofactor expansion, we have

\begin{align*}
\det(A) &=2 \begin{vmatrix}
7+x & -3\\
4& x
\end{vmatrix} \\
&=2\left( (7+x)x-(-3)4 \right)=2(x^2+7x+12)\\
&=2(x+3)(x+4).
\end{align*}

Thus the determinant of $A$ is zero if and only if $x=-3$ or $x=-4$.
Therefore the matrix $A$ is invertible for all $x$ except $x=-3$ and $x=-4$.

## Stanford University Linear Algebra Exam Problems and Solutions

Check out more problems from Stanford University Linear Algebra Exams ↴
Stanford University Linear Algebra.

• True of False Problems on Determinants and Invertible Matrices Determine whether each of the following statements is True or False. (a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$. (b) If the characteristic polynomial of an $n \times n$ matrix $A$ […]
• Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible. Let $A=\begin{bmatrix} 1 & 3 & 3 \\ -3 &-5 &-3 \\ 3 & 3 & 1 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 4 & 3 \\ -4 &-6 &-3 \\ 3 & 3 & 1 \end{bmatrix}.$ For this problem, you may use the fact that both matrices have the same characteristic […]