# Find an Orthonormal Basis of the Given Two Dimensional Vector Space

## Problem 602

Let $W$ be a subspace of $\R^4$ with a basis
$\left\{\, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \,\right\}.$

Find an orthonormal basis of $W$.

(The Ohio State University, Linear Algebra Midterm)

## Solution.

Let
$\mathbf{v}_1= \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} .$ Note that they are not orthogonal as the dot product is
$\mathbf{v}_1\cdot \mathbf{v}_2= \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}\cdot \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}=1\cdot0+ 0\cdot 1+ 1\cdot 1+1\cdot 1=2\neq 0.$

Let us first find an orthogonal basis for $W$ by the Gram-Schmidt orthogonalization process.

Let $\mathbf{w}_1:=\mathbf{v}_1$.
Next, let $\mathbf{w}_2:=\mathbf{v}_2+a\mathbf{v}_1$, where $a$ is a scalar to be determined so that $\mathbf{w}_1\cdot \mathbf{w}_2=0$.
(You may also use the formula of the Gram-Schmidt orthogonalization.)

As $\mathbf{w}_1$ and $\mathbf{w}_2$ is orthogonal, we have
\begin{align*}
0&=\mathbf{w}_1\cdot \mathbf{w}_2=\mathbf{v}_1\cdot(\mathbf{v}_2+a\mathbf{v}_1)\\
&=\mathbf{v}_1\cdot\mathbf{v}_2+a\mathbf{v}_1\cdot\mathbf{v}_1\\
&=2+3a.
\end{align*}
It follows that $a=-2/3$ and
$\mathbf{w}_2=\mathbf{v}_2-\frac{2}{3}\mathbf{v}_1=\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}-\frac{2}{3}\begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$

Now, to avoid fractions in our computation, let us consider $3\mathbf{w}_2$, instead of $\mathbf{w}_2$. Note that the scaling does not change the orthogonality.
We have
$3\mathbf{w}_2=3\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}-2\begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}=\begin{bmatrix} -2\\ 3\\ 1 \\1 \end{bmatrix}.$

Thus the set $\{\mathbf{w}_1, 3\mathbf{w}_2\}$ is an orthogonal basis for $W$.
However, the length of these vectors are not $1$ as we see
\begin{align*}
\|\mathbf{w}_1\|&=\sqrt{1^2+0^2+1^2+1^2}=\sqrt{3}\\
\|3\mathbf{w}_2\|&=\sqrt{(-2)^2+3^2+1^2+1^2}=\sqrt{15}.
\end{align*}

Now it suffices to normalize the vectors $\mathbf{w}_1, 3\mathbf{w}_2$ to obtain an orthonormal basis.
Therefore, the set
$\left\{\, \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \, \frac{1}{\sqrt{15}}\begin{bmatrix} -2\\ 3\\ 1 \\1 \end{bmatrix}\,\right\}.$ is an orthonormal basis for $W$.

## Comment.

This is one of the midterm 2 exam problems for Linear Algebra (Math 2568) in Autumn 2017.

One common mistake is just to normalize the vectors by dividing them by their length $\sqrt{3}$.
The resulting vectors have length $1$, but they are not orthogonal.

Another mistake is that you just changed the numbers in the vectors so that they are orthogonal.
The issue here is that if you change the numbers randomly, then the new vectors might no longer belong to the subspace $W$.

The point of the Gram-Schmidt orthogonalization is that the process converts any basis for $W$ to an orthogonal basis for $W$.
The above solution didn’t use the full formula of the Gram-Schmidt orthogonalization. Of course, you may use the formula in the exam but you must remember it correctly.

## List of Midterm 2 Problems for Linear Algebra (Math 2568) in Autumn 2017

### More from my site

• Find an Orthonormal Basis of $\R^3$ Containing a Given Vector Let $\mathbf{v}_1=\begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}$ be a vector in $\R^3$. Find an orthonormal basis for $\R^3$ containing the vector $\mathbf{v}_1$.   The first solution uses the Gram-Schumidt orthogonalization process. On the other hand, the second […]
• Orthonormal Basis of Null Space and Row Space Let $A=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}$. (a) Find an orthonormal basis of the null space of $A$. (b) Find the rank of $A$. (c) Find an orthonormal basis of the row space of $A$. (The Ohio State University, Linear Algebra Exam […]
• Find an Orthonormal Basis of the Range of a Linear Transformation Let $T:\R^2 \to \R^3$ be a linear transformation given by $T\left(\, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \,\right) = \begin{bmatrix} x_1-x_2 \\ x_2 \\ x_1+ x_2 \end{bmatrix}.$ Find an orthonormal basis of the range of $T$. (The Ohio […]
• True or False Problems of Vector Spaces and Linear Transformations These are True or False problems. For each of the following statements, determine if it contains a wrong information or not. Let $A$ be a $5\times 3$ matrix. Then the range of $A$ is a subspace in $\R^3$. The function $f(x)=x^2+1$ is not in the vector space $C[-1,1]$ because […]
• Given All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces $E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […] • Vector Space of 2 by 2 Traceless Matrices Let V be the vector space of all 2\times 2 matrices whose entries are real numbers. Let \[W=\left\{\, A\in V \quad \middle | \quad A=\begin{bmatrix} a & b\\ c& -a \end{bmatrix} \text{ for any } a, b, c\in \R \,\right\}.$ (a) Show that $W$ is a subspace of […]
• Maximize the Dimension of the Null Space of $A-aI$ Let $A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.$ Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]
• Determine Whether Given Subsets in $\R^4$ are Subspaces or Not (a) Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ satisfying $2x+4y+3z+7w+1=0.$ Determine whether $S$ is a subspace of $\R^4$. If so prove it. If not, explain why it is not a […]

#### You may also like...

##### Vector Space of 2 by 2 Traceless Matrices

Let $V$ be the vector space of all $2\times 2$ matrices whose entries are real numbers. Let \[W=\left\{\, A\in V...

Close