Find Eigenvalues, Eigenvectors, and Diagonalize the 2 by 2 Matrix

Diagonalization Problems and Solutions in Linear Algebra

Problem 630

Consider the matrix $A=\begin{bmatrix}
a & -b\\
b& a
\end{bmatrix}$, where $a$ and $b$ are real numbers and $b\neq 0$.

(a) Find all eigenvalues of $A$.

(b) For each eigenvalue of $A$, determine the eigenspace $E_{\lambda}$.

(c) Diagonalize the matrix $A$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) Find all eigenvalues of $A$.

The characteristic polynomial $p(t)$ of the matrix $A$ is
\begin{align*}
p(t)&=\det(A-tI) = \begin{vmatrix}
a-t & -b\\
b& a-t
\end{vmatrix}\\[6pt] &=(a-t)^2+b^2.
\end{align*}

The eigenvalues of $A$ are roots of $p(t)$.
So we solve $p(t)=0$. We have
\begin{align*}
& \quad (a-t)^2+b^2=0\\
\Leftrightarrow & \quad (a-t)^2=-b^2\\
\Leftrightarrow &\quad a-t =\pm i b\\
\Leftrightarrow &\quad t= a \pm ib.
\end{align*}
Here $i=\sqrt{-1}$.

Thus, the eigenvalues of $A$ are $a\pm ib$.

(b) For each eigenvalue of $A$, determine the eigenspace $E_{\lambda}$.

We first determine the eigenspace $E_{\lambda}$ for $\lambda = a+ib$.
Recall that by definition $E_{\lambda}=\calN(A-\lambda I)$, the nullspace of $A-\lambda I$.

We compute
\begin{align*}
A-(a+ib)I=\begin{bmatrix}
-ib & -b\\
b& -ib
\end{bmatrix}
\xrightarrow{\frac{i}{b}R_1}
\begin{bmatrix}
1 & -i\\
b& -ib
\end{bmatrix}
\xrightarrow{R_2-bR_1}
\begin{bmatrix}
1 & -i\\
0& 0
\end{bmatrix}.
\end{align*}
Note that in the above row reduction, we needed the assumption $b\neq 0$.

It follows that the general solution of the system is $x_1=i x_2$.
Hence, we have
\[E_{a+ib} =\Span \left(\, \begin{bmatrix}
i \\
1
\end{bmatrix} \,\right).\]


Note that the other eigenvalue $a-ib$ is the complex conjugate of $a+ib$.
It follows that the eigenspace $E_{a-ib}$ is obtained by conjugating the eigenspace $E_{a+ib}$.
Thus,
\[E_{a-ib} =\Span \left(\, \begin{bmatrix}
-i \\
1
\end{bmatrix} \,\right).\]

(c) Diagonalize the matrix $A$

From part (b), we see that
\[\begin{bmatrix}
i \\
1
\end{bmatrix} \text{ and } \begin{bmatrix}
-i \\
1
\end{bmatrix}\] form an eigenbasis for $\C^2$.

So, we set
\[S=\begin{bmatrix}
i & -i\\
1& 1
\end{bmatrix} \text{ and } D=\begin{bmatrix}
a+ib & 0\\
0& a-ib
\end{bmatrix},\] and we obtain $S^{-1}AS=D$ by the diagonalization procedure.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Diagonalize the 3 by 3 Matrix if it is DiagonalizableDiagonalize the 3 by 3 Matrix if it is Diagonalizable Determine whether the matrix \[A=\begin{bmatrix} 0 & 1 & 0 \\ -1 &0 &0 \\ 0 & 0 & 2 \end{bmatrix}\] is diagonalizable. If it is diagonalizable, then find the invertible matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.   How to […]
  • How to Diagonalize a Matrix. Step by Step Explanation.How to Diagonalize a Matrix. Step by Step Explanation. In this post, we explain how to diagonalize a matrix if it is diagonalizable. As an example, we solve the following problem. Diagonalize the matrix \[A=\begin{bmatrix} 4 & -3 & -3 \\ 3 &-2 &-3 \\ -1 & 1 & 2 \end{bmatrix}\] by finding a nonsingular […]
  • Diagonalize the Complex Symmetric 3 by 3 Matrix with $\sin x$ and $\cos x$Diagonalize the Complex Symmetric 3 by 3 Matrix with $\sin x$ and $\cos x$ Consider the complex matrix \[A=\begin{bmatrix} \sqrt{2}\cos x & i \sin x & 0 \\ i \sin x &0 &-i \sin x \\ 0 & -i \sin x & -\sqrt{2} \cos x \end{bmatrix},\] where $x$ is a real number between $0$ and $2\pi$. Determine for which values of $x$ the […]
  • Quiz 13 (Part 1) Diagonalize a MatrixQuiz 13 (Part 1) Diagonalize a Matrix Let \[A=\begin{bmatrix} 2 & -1 & -1 \\ -1 &2 &-1 \\ -1 & -1 & 2 \end{bmatrix}.\] Determine whether the matrix $A$ is diagonalizable. If it is diagonalizable, then diagonalize $A$. That is, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that […]
  • Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam) Let \[\begin{bmatrix} 0 & 0 & 1 \\ 1 &0 &0 \\ 0 & 1 & 0 \end{bmatrix}.\] (a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers? (b) Calculate $A^{2009}$. (Princeton University, […]
  • Diagonalize a 2 by 2 Symmetric MatrixDiagonalize a 2 by 2 Symmetric Matrix Diagonalize the $2\times 2$ matrix $A=\begin{bmatrix} 2 & -1\\ -1& 2 \end{bmatrix}$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.   Solution. The characteristic polynomial $p(t)$ of the matrix $A$ […]
  • Quiz 12. Find Eigenvalues and their Algebraic and Geometric MultiplicitiesQuiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities (a) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.\] Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue. (b) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 […]
  • Find the Limit of a MatrixFind the Limit of a Matrix Let \[A=\begin{bmatrix} \frac{1}{7} & \frac{3}{7} & \frac{3}{7} \\ \frac{3}{7} &\frac{1}{7} &\frac{3}{7} \\ \frac{3}{7} & \frac{3}{7} & \frac{1}{7} \end{bmatrix}\] be $3 \times 3$ matrix. Find \[\lim_{n \to \infty} A^n.\] (Nagoya University Linear […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Diagonalization Problems and Solutions in Linear Algebra
Diagonalize a 2 by 2 Symmetric Matrix

Diagonalize the $2\times 2$ matrix $A=\begin{bmatrix} 2 & -1\\ -1& 2 \end{bmatrix}$ by finding a nonsingular matrix $S$ and a...

Close