Find the Dimension of the Subspace of Vectors Perpendicular to Given Vectors

Linear algebra problems and solutions

Problem 578

Let $V$ be a subset of $\R^4$ consisting of vectors that are perpendicular to vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$, where
\[\mathbf{a}=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix}, \quad \mathbf{b}=\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}, \quad \mathbf{c}=\begin{bmatrix}
0 \\
1 \\
-1 \\
0
\end{bmatrix}.\]

Namely,
\[V=\{\mathbf{x}\in \R^4 \mid \mathbf{a}^{\trans}\mathbf{x}=0, \mathbf{b}^{\trans}\mathbf{x}=0, \text{ and } \mathbf{c}^{\trans}\mathbf{x}=0\}.\]

(a) Prove that $V$ is a subspace of $\R^4$.

(b) Find a basis of $V$.

(c) Determine the dimension of $V$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that $V$ is a subspace of $\R^4$.

Observe that the conditions
\[\mathbf{a}^{\trans}\mathbf{x}=0, \mathbf{b}^{\trans}\mathbf{x}=0, \text{ and } \mathbf{c}^{\trans}\mathbf{x}=0\] can be combined into the following matrix equation
\[A\mathbf{x}=\mathbf{0},\] where
\[A=\begin{bmatrix}
1 & 0 & 1 & 0 \\
1 &1 & 0 & 0 \\
0 & 1 & -1 & 0
\end{bmatrix}\] and $\mathbf{0}$ is the three dimensional zero vector.
Note that the rows of the matrix $A$ are $\mathbf{a}^{\trans}$, $\mathbf{b}^{\trans}$, and $\mathbf{c}^{\trans}$.
It follows that the subset $V$ is the null space $\calN(A)$ of the matrix $A$.
Being the null space, $V=\calN(A)$ is a subspace of $\R^4$.
(See the post “The Null Space (the Kernel) of a Matrix is a Subspace of $\R^n$“.)

(b) Find a basis of $V$.

In the proof of Part (a), we saw that $V=\calN(A)$.
To find a basis, we determine the solutions of $A\mathbf{x}=\mathbf{0}$.
Applying elementary row operations to the augmented matrix, we see that
\begin{align*}
\left[\begin{array}{rrrr|r}
1 & 0 & 1 & 0 &0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right] \xrightarrow{R_2-R_1}
\left[\begin{array}{rrrr|r}
1 & 0 & 1 & 0 &0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right]\\[6pt] \xrightarrow{R_3-R_2}
\left[\begin{array}{rrrr|r}
1 & 0 & 1 & 0 &0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right].
\end{align*}
It follows that the general solution is given by
\[x_1=-x_3, x_2=x_3.\] The vector form solution is
\[\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}=\begin{bmatrix}
-x_3 \\
x_3 \\
x_3 \\
x_4
\end{bmatrix}=x_3\begin{bmatrix}
-1 \\
1 \\
1 \\
0
\end{bmatrix}+x_4\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}.\]

Hence we have
\begin{align*}
V&=\calN(A)\\
&=\left\{\, \mathbf{x}\in \R^4 \quad \middle|\quad \mathbf{x}=x_3\begin{bmatrix}
-1 \\
1 \\
1 \\
0
\end{bmatrix}+x_4\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}, \text{ where $x_3, x_4\in \R$} \,\right\}\\[6pt] &=\Span \left\{\, \begin{bmatrix}
-1 \\
1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix} \,\right\}.
\end{align*}
Let $B:=\left\{\, \begin{bmatrix}
-1 \\
1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix} \,\right\}$.
Then we just showed that $B$ is a spanning set for $V$.
It is straightforward to see that $B$ is linearly independent.
Hence $B$ is a basis for $V$.

(c) Determine the dimension of $V$.

As the basis $B$ for $V$ that we obtained in Part (b) consists of two vectors, the dimension of the subspace $V$ is $\dim(V)=2$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
Every Basis of a Subspace Has the Same Number of Vectors

Let $V$ be a subspace of $\R^n$. Suppose that $B=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis of the subspace $V$....

Close