Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are
\[||\mathbf{a}||=||\mathbf{b}||=1\]
and the inner product
\[\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.\]

Then determine the length $||\mathbf{a}-\mathbf{b}||$.
(Note that this length is the distance between $\mathbf{a}$ and $\mathbf{b}$.)

Recall that the length of a vector $\mathbf{x}$ is defined to be
\[||\mathbf{x}||=\sqrt{\mathbf{x}^{\trans}\mathbf{x}},\]
where $\mathbf{x}^{\trans}$ is the transpose of $\mathbf{x}$.

Also, recall that the inner product of two vectors $\mathbf{x}, \mathbf{y}$ are commutative.
Namely we have
\[\mathbf{x}\cdot \mathbf{y}=\mathbf{x}^{\trans}\mathbf{y}=\mathbf{y}^{\trans}\mathbf{x}=\mathbf{y} \cdot \mathbf{x}.\]

Applying the second fact with given vectors $\mathbf{a}, \mathbf{b}$, we obtain
\[\mathbf{a}^{\trans}\mathbf{b}=\mathbf{b}^{\trans}\mathbf{a}= -\frac{1}{2}.\]

Now we compute $||\mathbf{a}-\mathbf{b}||^2$ as follows.
We have
\begin{align*}
||\mathbf{a}-\mathbf{b}||^2&=(\mathbf{a}-\mathbf{b})^{\trans}(\mathbf{a}-\mathbf{b}) \qquad \text{ (by definition of the length)}\\
&=(\mathbf{a}^{\trans}-\mathbf{b}^{\trans})(\mathbf{a}-\mathbf{b})\\
&=\mathbf{a}^{\trans}\mathbf{a}-\mathbf{a}^{\trans}\mathbf{b}-\mathbf{b}^{\trans}\mathbf{a}+\mathbf{b}^{\trans}\mathbf{b}\\
&=||\mathbf{a}||^2-\mathbf{a}^{\trans}\mathbf{b}-\mathbf{b}^{\trans}\mathbf{a}+||\mathbf{b}||^2\\
&=1-\left(-\frac{1}{2} \right)-\left(-\frac{1}{2} \right)+1\\
&=3.
\end{align*}

Since the length is nonnegative, we take the square root of the above equality and obtain
\[||\mathbf{a}-\mathbf{b}||=\sqrt{3}.\]

Find the Inverse Matrix of a Matrix With Fractions
Find the inverse matrix of the matrix
\[A=\begin{bmatrix}
\frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt]
\frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt]
-\frac{3}{7} & \frac{6}{7} & -\frac{2}{7}
\end{bmatrix}.\]
Hint.
You may use the augmented matrix […]

Inner Product, Norm, and Orthogonal Vectors
Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in […]

Rotation Matrix in Space and its Determinant and Eigenvalues
For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
\[A=\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}.\]
(a) Find the determinant of the matrix $A$.
(b) Show that $A$ is an […]

Construction of a Symmetric Matrix whose Inverse Matrix is Itself
Let $\mathbf{v}$ be a nonzero vector in $\R^n$.
Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$.
Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by
\[A=I-a\mathbf{v}\mathbf{v}^{\trans},\]
where […]

Unit Vectors and Idempotent Matrices
A square matrix $A$ is called idempotent if $A^2=A$.
(a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$.
Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$.
Prove that $P$ is an idempotent matrix.
(b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be […]

Prove the Cauchy-Schwarz Inequality
Let $\mathbf{a}, \mathbf{b}$ be vectors in $\R^n$.
Prove the Cauchy-Schwarz inequality:
\[|\mathbf{a}\cdot \mathbf{b}|\leq ||\mathbf{a}||\,||\mathbf{b}||.\]
Here $\mathbf{a}\cdot \mathbf{b}$ is the dot (inner) product of $\mathbf{a}$ and $\mathbf{b}$, and $||\mathbf{a}||$ is […]

Sum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All Zero
Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if
\[A_1^2+A_2^2+\cdots+A_m^2=\calO,\]
where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.
Hint.
Recall that a complex matrix $A$ is Hermitian if […]

Eigenvalues of a Hermitian Matrix are Real Numbers
Show that eigenvalues of a Hermitian matrix $A$ are real numbers.
(The Ohio State University Linear Algebra Exam Problem)
We give two proofs. These two proofs are essentially the same.
The second proof is a bit simpler and concise compared to the first one.
[…]