Find the Eigenvalues and Eigenvectors of the Matrix $A^4-3A^3+3A^2-2A+8E$.

Problem 191

Let
\[A=\begin{bmatrix}
1 & -1\\
2& 3
\end{bmatrix}.\]

Find the eigenvalues and the eigenvectors of the matrix
\[B=A^4-3A^3+3A^2-2A+8E.\]

(Nagoya University Linear Algebra Exam Problem)
 
LoadingAdd to solve later

Sponsored Links


Hint.

Apply the Cayley-Hamilton theorem.
That is if $p_A(t)$ is the characteristic polynomial of the matrix $A$, then the matrix $p_A(A)$ is the zero matrix.

Solution.

Let us first find the characteristic polynomial $p_A(t)$ of the matrix $A$.
We have
\begin{align*}
p_A(t)&=\det(A-tI)=\begin{vmatrix}
1-t & -1\\
2& 3-t
\end{vmatrix}\\
&=(1-t)(3-t)-(-1)(2)=t^2-4t+5.
\end{align*}
Solving $t^2-4t+5=0$, we see that the matrix $A$ has the eigenvalues $2\pm i$ but it is not a good idea to use this directly to find the eigenvalues of the matrix $B$.
Instead, note that by the Cayley-Hamilton theorem, we know that
\[p_t(A)=A^2-4A+5I=O,\] where $I$ is the $2\times 2$ identity matrix and $O$ is the $2\times 2$ zero matrix.


Since we have
\[B=A^4-3A^3+3A^2-2A+8E=(A^2-4A+5I)(A^2+A+2I)+A-2I,\] we have
\[B=A-2I=\begin{bmatrix}
-1 & -1\\
2& 1
\end{bmatrix}.\] Since the eigenvalues of $A$ is $2\pm i$, the eigenvalues of $B=A-2I$ are
\[(2\pm i)-2=\pm i.\]


Next, we find eigenvectors.
Let us first find eigenvectors corresponding to the eigenvalue $i$.
We have
\begin{align*}
A-iI&=\begin{bmatrix}
-1-i & -1\\
2& 1-i
\end{bmatrix}
\xrightarrow{(-1+i)R_1}
\begin{bmatrix}
2 & 1-i\\
2 & 1-i
\end{bmatrix}\\
&
\xrightarrow{R_2-R_1}
\begin{bmatrix}
2 & 1-i\\
0 & 0
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_1}
\begin{bmatrix}
1 & (1-i)/2\\
0 & 0
\end{bmatrix}.
\end{align*}
Thus we have
\[x_1=-\frac{1-i}{2}\] and the eigenvectors associated with the eigenvalue $i$ are
\[\mathbf{x}=x_2\begin{bmatrix}
-\frac{1-i}{2} \\
1
\end{bmatrix},\] where $x_2$ is any nonzero complex number.
Or equivalently, scaling the vector by $-1+i$, the eigenvectors corresponding to the eigenvalue $i$ are
\[a\begin{bmatrix}
1 \\
-1-i
\end{bmatrix},\] where $a$ is any nonzero complex number.


Since $B$ is a real matrix and the eigenvalues $i$ and $-i$ are complex conjugate to each other, the eigenvectors of $-i$ are just the conjugates of eigenvectors of $i$. Thus the eigenvectors corresponding to the eigenvalue $-i$ are
\[b\begin{bmatrix}
1 \\
-1+i
\end{bmatrix},\] where $b$ is any nonzero complex number.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra exam problems and solutions at University of California, Berkeley
A Matrix Having One Positive Eigenvalue and One Negative Eigenvalue

Prove that the matrix \[A=\begin{bmatrix} 1 & 1.00001 & 1 \\ 1.00001 &1 &1.00001 \\ 1 & 1.00001 & 1...

Close