Find the Formula for the Power of a Matrix

Linear Algebra Problems and Solutions

Problem 383

Let
\[A=\begin{bmatrix}
1 & 1 & 1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}\] be a $3\times 3$ matrix. Then find the formula for $A^n$ for any positive integer $n$.

 
LoadingAdd to solve later

Sponsored Links

Proof.

We first compute several powers of $A$ and guess the general formula.
We have
\begin{align*}
A^2=\begin{bmatrix}
1 & 1 & 1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}
=\begin{bmatrix}
1 & 1 & 3 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix},
\end{align*}
\begin{align*}
A^3=A^2A=\begin{bmatrix}
1 & 1 & 3 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}
=\begin{bmatrix}
1 & 1 & 5 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix},
\end{align*}
\begin{align*}
A^4=A^3A=\begin{bmatrix}
1 & 1 & 5 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
1 & 1 & 1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}=\begin{bmatrix}
1 & 1 & 7 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}.
\end{align*}

From these computations, we guess the general formula of $A^n$ is
\[A^n=\begin{bmatrix}
1 & 1 & 2n-1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}.\]


We prove this formula by mathematical induction on $n$.
The base case $n=1$ follows from the definition of $A$.

Suppose that the formula is true for $n=k$.
We prove the formula for $n=k+1$.
We have
\begin{align*}
A^{k+1}&=A^{k}A\\
&=\begin{bmatrix}
1 & 1 & 2k-1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}
&& \text{by the induction hypothesis}\\
&=\begin{bmatrix}
1 & 1 & 2k+1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}\\
&=\begin{bmatrix}
1 & 1 & 2(k+1)-1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}.
\end{align*}

Thus the formula holds for $n=k+1$.
Hence the formula is true for any positive integer $n$ by induction.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Compute Power of Matrix If Eigenvalues and Eigenvectors Are GivenCompute Power of Matrix If Eigenvalues and Eigenvectors Are Given Let $A$ be a $3\times 3$ matrix. Suppose that $A$ has eigenvalues $2$ and $-1$, and suppose that $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors corresponding to $2$ and $-1$, respectively, where \[\mathbf{u}=\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \text{ […]
  • How to Find a Formula of the Power of a MatrixHow to Find a Formula of the Power of a Matrix Let $A= \begin{bmatrix} 1 & 2\\ 2& 1 \end{bmatrix}$. Compute $A^n$ for any $n \in \N$. Plan. We diagonalize the matrix $A$ and use this Problem. Steps. Find eigenvalues and eigenvectors of the matrix $A$. Diagonalize the matrix $A$. Use […]
  • The Powers of the Matrix with Cosine and Sine FunctionsThe Powers of the Matrix with Cosine and Sine Functions Prove the following identity for any positive integer $n$. \[\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix}^n=\begin{bmatrix} \cos n\theta & -\sin n\theta\\ \sin n\theta& \cos […]
  • Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$ Let \[A=\begin{bmatrix} 1 & 2\\ 4& 3 \end{bmatrix}.\] (a) Find eigenvalues of the matrix $A$. (b) Find eigenvectors for each eigenvalue of $A$. (c) Diagonalize the matrix $A$. That is, find an invertible matrix $S$ and a diagonal matrix $D$ such that […]
  • Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$ Let $A$ be a $3\times 3$ real orthogonal matrix with $\det(A)=1$. (a) If $\frac{-1+\sqrt{3}i}{2}$ is one of the eigenvalues of $A$, then find the all the eigenvalues of $A$. (b) Let \[A^{100}=aA^2+bA+cI,\] where $I$ is the $3\times 3$ identity matrix. Using the […]
  • Compute $A^5\mathbf{u}$ Using Linear CombinationCompute $A^5\mathbf{u}$ Using Linear Combination Let \[A=\begin{bmatrix} -4 & -6 & -12 \\ -2 &-1 &-4 \\ 2 & 3 & 6 \end{bmatrix}, \quad \mathbf{u}=\begin{bmatrix} 6 \\ 5 \\ -3 \end{bmatrix}, \quad \mathbf{v}=\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, \quad \text{ and } […]
  • Diagonalize the Upper Triangular Matrix and Find the Power of the MatrixDiagonalize the Upper Triangular Matrix and Find the Power of the Matrix Consider the $2\times 2$ complex matrix \[A=\begin{bmatrix} a & b-a\\ 0& b \end{bmatrix}.\] (a) Find the eigenvalues of $A$. (b) For each eigenvalue of $A$, determine the eigenvectors. (c) Diagonalize the matrix $A$. (d) Using the result of the […]
  • Powers of a Diagonal MatrixPowers of a Diagonal Matrix Let $A=\begin{bmatrix} a & 0\\ 0& b \end{bmatrix}$. Show that (1) $A^n=\begin{bmatrix} a^n & 0\\ 0& b^n \end{bmatrix}$ for any $n \in \N$. (2) Let $B=S^{-1}AS$, where $S$ be an invertible $2 \times 2$ matrix. Show that $B^n=S^{-1}A^n S$ for any $n \in […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Common Eigenvector of Two Matrices $A, B$ is Eigenvector of $A+B$ and $AB$.

Let $\lambda$ be an eigenvalue of $n\times n$ matrices $A$ and $B$ corresponding to the same eigenvector $\mathbf{x}$. (a) Show...

Close