Find the Limit of a Matrix

Nagoya University Linear Algebra Exam Problems and Solutions

Problem 50

Let
\[A=\begin{bmatrix}
\frac{1}{7} & \frac{3}{7} & \frac{3}{7} \\
\frac{3}{7} &\frac{1}{7} &\frac{3}{7} \\
\frac{3}{7} & \frac{3}{7} & \frac{1}{7}
\end{bmatrix}\] be $3 \times 3$ matrix. Find

\[\lim_{n \to \infty} A^n.\]

(Nagoya University Linear Algebra Exam)

LoadingAdd to solve later

Sponsored Links


Hint.

  1. The matrix $A$ is symmetric, hence diagonalizable.
  2. Diagonalize $A$.
  3. You may want to find eigenvalues
    without computing the characteristic polynomial for $A$.

Solution.

Note that the matrix $A$ is symmetric, hence it is diagonalizable.
We observe several things to simplify the computation.


First, note that the sum of the entries in each row is $1$.
(Such a matrix is call a stochastic matrix. See the comment below.)
Thus the matrix $A$ has eigenvalue $1$ and $\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}$ is an eigenvector.


Also note that if we add $2/7(=-\lambda)$ to diagonal entries, then every entry becomes $3/7$.
That is,
\[A+\frac{2}{7}I=\begin{bmatrix}
\frac{3}{7} & \frac{3}{7} & \frac{3}{7} \\
\frac{3}{7} &\frac{3}{7} &\frac{3}{7} \\
\frac{3}{7} & \frac{3}{7} & \frac{3}{7}
\end{bmatrix},\] which is clearly singular.

From this observation, we notice that $-2/7$ is an eigenvalue of $A$ and eigenvectors are nonzero solution of $x_1+x_2+x_3=0$. Therefore $\begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}$ and $\begin{bmatrix}
0 \\
1 \\
-1
\end{bmatrix}$ are linearly independent eigenvectors for the eigenvalue $-2/7$.

Hence the geometric (and hence algebraic) multiplicity of the eigenvalue $-2/7$ is $2$.
(Note that we found all eigenvalues of $A$ without actually computing the characteristic polynomial.)


Now the invertible matix $P=\begin{bmatrix}
1 & 1 & 0 \\
1 &-1 &1 \\
1 & 0 & -1
\end{bmatrix}$ diagonalize $A$. Namely we have
\[P^{-1}AP=\begin{bmatrix}
1 & 0 & 0 \\
0 &-2/7 &0 \\
0 & 0 & -2/7
\end{bmatrix}.\] Hence
\[A=P\begin{bmatrix}
1 & 0 & 0 \\
0 &-2/7 &0 \\
0 & 0 & -2/7
\end{bmatrix}P^{-1}.\] Therefore we have
\[ A^n=P\begin{bmatrix}
1^n & 0 & 0 \\
0 & (-2/7)^n &0 \\
0 & 0 & (-2/7)^n
\end{bmatrix}P^{-1}
\text{ and } \lim_{n \to \infty} A^n=P\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 &0 \\
0 & 0 & 0
\end{bmatrix}P^{-1}. \] Find the inverse $P^{-1}$ by your favorite method
\[P^{-1}=\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\[6pt] \frac{2}{3} &\frac{-1}{3} &\frac{-1}{3} \\[6pt] \frac{1}{3} & \frac{1}{3} & \frac{-2}{3}
\end{bmatrix}.\] Then the answer is
\[\lim_{n \to \infty} A^n=\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\[6pt] \frac{1}{3} &\frac{1}{3} &\frac{1}{3} \\[6pt] \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{bmatrix}.\]

Comment.

You might come up with the idea to use the diagonalization as it is an exam problem in linear algebra.
But you soon realize that computing the characteristic polynomial for $A$ is a bit messy.
So sometimes it is important to find eigenvalues without finding the roots of the characteristic polynomial.

We observed that

  1. the sum of row entries of $A$ is $1$
  2. if we add $(2/7)I$ to $A$ then we obtain a matrix whose entries are all identical.

These observation yields the eigenvalues of $A$ without using the characteristic polynomial.


If the sum of entries of each row of a matrix is $1$, then the matrix is called called a stochastic matrix (or Markov matrix, probability matrix).
The matrix $A$ in the problem is an example of a stochastic matrix.

Stochastic matrices have always $1$ as an eigenvalue.
see the post
 Stochastic matrix (Markov matrix) and its eigenvalues and eigenvectors
for an example of a $2\times 2$ stochastic matrix.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
Linearly Independent/Dependent Vectors Question

Let $V$ be an $n$-dimensional vector space over a field $K$. Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent...

Close