For Which Choices of $x$ is the Given Matrix Invertible?

Linear algebra problems and solutions

Problem 394

Determine the values of $x$ so that the matrix
\[A=\begin{bmatrix}
1 & 1 & x \\
1 &x &x \\
x & x & x
\end{bmatrix}\] is invertible.
For those values of $x$, find the inverse matrix $A^{-1}$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

We use the fact that a matrix is invertible if and only if its determinant is nonzero.
So we compute the determinant of the matrix $A$.

We have
\begin{align*}
&\det(A)=\begin{vmatrix}
1 & 1 & x \\
1 &x &x \\
x & x & x
\end{vmatrix}\\
&=(1)\begin{vmatrix}
x & x\\
x& x
\end{vmatrix}-(1)\begin{vmatrix}
1 & x\\
x& x
\end{vmatrix}+x\begin{vmatrix}
1 & x\\
x& x
\end{vmatrix} && \text{by the first row cofactor expansion.}\\
&=(x^2-x^2)-(x-x^2)+x(x-x^2)\\
&=(x-1)(x-x^2)\\
&=x(x-1)^2.
\end{align*}

Thus, the determinant $\det(A)$ is zero if and only if $x=0, 1$.
Hence the matrix $A$ is invertible if and only if $x\neq 0, 1$.


Next, we suppose that $x \neq 0, 1$ and find the inverse matrix of $A$.
We reduce the augmented matrix $[A\mid I]$ as follows.
We have
\begin{align*}
&[A\mid I]= \left[\begin{array}{rrr|rrr}
1 & 1 & x & 1 &0 & 0 \\
1 & x & x & 0 & 1 & 0 \\
x & x & x & 0 & 0 & 1 \\
\end{array} \right] \\[6pt] & \xrightarrow{\substack{R_2-R_1 \\ R_3-xR_1}}
\left[\begin{array}{rrr|rrr}
1 & 1 & x & 1 &0 & 0 \\
0 & x-1 & 0 & -1 & 1 & 0 \\
0 & 0 & x-x^2 & -x & 0 & 1 \\
\end{array} \right] \xrightarrow[\frac{1}{x-x^2} R_3]{\frac{1}{x-1}R_2}
\left[\begin{array}{rrr|rrr}
1 & 1 & x & 1 &0 & 0 \\[8pt] 0 & 1 & 0 & \frac{-1}{x-1} & \frac{1}{x-1} & 0 \\[8pt] 0 & 0 & 1 & \frac{-1}{1-x} & 0 & \frac{1}{x-x^2} \\
\end{array} \right]\\[6pt] & \xrightarrow{R_1-R_2}
\left[\begin{array}{rrr|rrr}
1 & 0 & x & \frac{x}{x-1} & \frac{-1}{x-1} & 0 \\[8pt] 0 & 1 & 0 & \frac{-1}{x-1} & \frac{1}{x-1} & 0 \\[8pt] 0 & 0 & 1 & \frac{-1}{1-x} & 0 & \frac{1}{x-x^2} \\
\end{array} \right] \xrightarrow{R_1-xR_3}
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 0 & \frac{-1}{x-1} & \frac{-x}{x-x^2}\\[8pt] 0 & 1 & 0 & \frac{-1}{x-1} & \frac{1}{x-1} & 0 \\[8pt] 0 & 0 & 1 & \frac{-1}{1-x} & 0 & \frac{1}{x-x^2} \\
\end{array} \right].
\end{align*}

Now that we reduced the left $3\times 3$ matrix into the identity matrix, the right $3\times 3$ matrix is the inverse matrix of $A$.
(Note that when we applied elementary row operations, we divided by $x-1$ and $x-x^2$, and this is where we needed to assume $x \neq 0, 1$.)

We have
\begin{align*}
A^{-1}=\begin{bmatrix}
0 & \frac{-1}{x-1} & \frac{-x}{x-x^2}\\[8pt] \frac{-1}{x-1} & \frac{1}{x-1} & 0 \\[8pt] \frac{-1}{1-x} & 0 & \frac{1}{x-x^2} \\
\end{bmatrix}
=\frac{1}{x(1-x)}\begin{bmatrix}
0 & x & -x \\
x &-x &0 \\
-x & 0 & 1
\end{bmatrix}.
\end{align*}


LoadingAdd to solve later

Sponsored Links

More from my site

  • Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a RelationQuiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation (a) Find the inverse matrix of \[A=\begin{bmatrix} 1 & 0 & 1 \\ 1 &0 &0 \\ 2 & 1 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (b) Find a nonsingular $2\times 2$ matrix $A$ such that \[A^3=A^2B-3A^2,\] where […]
  • Find Inverse Matrices Using Adjoint MatricesFind Inverse Matrices Using Adjoint Matrices Let $A$ be an $n\times n$ matrix. The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be \[C_{ij}=(-1)^{ij}\det(M_{ij}),\] where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column. Then consider the $n\times n$ matrix […]
  • Find the Inverse Matrices if Matrices are Invertible by Elementary Row OperationsFind the Inverse Matrices if Matrices are Invertible by Elementary Row Operations For each of the following $3\times 3$ matrices $A$, determine whether $A$ is invertible and find the inverse $A^{-1}$ if exists by computing the augmented matrix $[A|I]$, where $I$ is the $3\times 3$ identity matrix. (a) $A=\begin{bmatrix} 1 & 3 & -2 \\ 2 &3 &0 \\ […]
  • The Inverse Matrix of an Upper Triangular Matrix with VariablesThe Inverse Matrix of an Upper Triangular Matrix with Variables Let $A$ be the following $3\times 3$ upper triangular matrix. \[A=\begin{bmatrix} 1 & x & y \\ 0 &1 &z \\ 0 & 0 & 1 \end{bmatrix},\] where $x, y, z$ are some real numbers. Determine whether the matrix $A$ is invertible or not. If it is invertible, then find […]
  • A Matrix Similar to a Diagonalizable Matrix is Also DiagonalizableA Matrix Similar to a Diagonalizable Matrix is Also Diagonalizable Let $A, B$ be matrices. Show that if $A$ is diagonalizable and if $B$ is similar to $A$, then $B$ is diagonalizable.   Definitions/Hint. Recall the relevant definitions. Two matrices $A$ and $B$ are similar if there exists a nonsingular (invertible) matrix $S$ such […]
  • Find All Values of $x$ such that the Matrix is InvertibleFind All Values of $x$ such that the Matrix is Invertible Given any constants $a,b,c$ where $a\neq 0$, find all values of $x$ such that the matrix $A$ is invertible if \[ A= \begin{bmatrix} 1 & 0 & c \\ 0 & a & -b \\ -1/a & x & x^{2} \end{bmatrix} . \]   Solution. We know that $A$ is invertible precisely when […]
  • Determine Whether the Following Matrix Invertible. If So Find  Its Inverse Matrix.Determine Whether the Following Matrix Invertible. If So Find Its Inverse Matrix. Let A be the matrix \[\begin{bmatrix} 1 & -1 & 0 \\ 0 &1 &-1 \\ 0 & 0 & 1 \end{bmatrix}.\] Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse. (The Ohio State University Linear Algebra […]
  • How to Find the Determinant of the  $3\times 3$ MatrixHow to Find the Determinant of the $3\times 3$ Matrix Find the determinant of the matix \[A=\begin{bmatrix} 100 & 101 & 102 \\ 101 &102 &103 \\ 102 & 103 & 104 \end{bmatrix}.\]   Solution. Note that the determinant does not change if the $i$-th row is added by a scalar multiple of the $j$-th row if $i \neq […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
If a Matrix is the Product of Two Matrices, is it Invertible?

(a) Let $A$ be a $6\times 6$ matrix and suppose that $A$ can be written as \[A=BC,\] where $B$ is...

Close