Galois Group of the Polynomial $x^2-2$

Galois theory problem and solution

Problem 230

Let $\Q$ be the field of rational numbers.

(a) Is the polynomial $f(x)=x^2-2$ separable over $\Q$?

(b) Find the Galois group of $f(x)$ over $\Q$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

(a) The polynomial $f(x)=x^2-2$ is separable over $\Q$

The roots of the polynomial $f(x)$ are $\pm \sqrt{2}$. Since all the roots of $f(x)$ are distinct, $f(x)=x^2-2$ is separable.

(b) The Galois group of $f(x)$ over $\Q$

The Galois group of the separable polynomial $f(x)=x^2-2$ is the Galois group of the splitting field of $f(x)$ over $\Q$.
Since the roots of $f(x)$ are $\pm \sqrt{2}$, the splitting field of $f(x)$ is $\Q(\sqrt{2})$. Thus, we want to determine the Galois group
\[\Gal(\Q(\sqrt{2})/\Q).\] Let $\sigma \in \Gal(\Q(\sqrt{2})/\Q)$. Then the automorphism $\sigma$ permutes the roots of the irreducible polynomial $f(x)=x^2-2$.

Thus $\sigma(\sqrt{2})$ is either $\sqrt{2}$ or $-\sqrt{2}$. Since $\sigma$ fixes the elements of $\Q$, this determines $\sigma$ completely as we have
\[\sigma(a+b\sqrt{2})=a+b\sigma(\sqrt{2})=a\pm \sqrt{2}.\]

The map $\sqrt{2} \mapsto \sqrt{2}$ is the identity automorphism $1$ of $\Q \sqrt{2}$.
The other map $\sqrt{2} \mapsto -\sqrt{2}$ gives non identity automorphism $\tau$. Therefore, the Galois group $\Gal(\Q(\sqrt{2})/\Q)=\{1, \tau\}$ is a cyclic group of order $2$.

In summary, the Galois group of the polynomial $f(x)=x^2-2$ is isomorphic to a cyclic group of order $2$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Galois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic GroupGalois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic Group Show that $\Q(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, that is, it is a Galois extension of degree $4$ with cyclic Galois group.   Proof. Put $\alpha=\sqrt{2+\sqrt{2}}$. Then we have $\alpha^2=2+\sqrt{2}$. Taking square of $\alpha^2-2=\sqrt{2}$, we obtain […]
  • Galois Group of the Polynomial  $x^p-2$.Galois Group of the Polynomial $x^p-2$. Let $p \in \Z$ be a prime number. Then describe the elements of the Galois group of the polynomial $x^p-2$.   Solution. The roots of the polynomial $x^p-2$ are \[ \sqrt[p]{2}\zeta^k, k=0,1, \dots, p-1\] where $\sqrt[p]{2}$ is a real $p$-th root of $2$ and $\zeta$ […]
  • Determine the Splitting Field of the Polynomial $x^4+x^2+1$ over $\Q$Determine the Splitting Field of the Polynomial $x^4+x^2+1$ over $\Q$ Determine the splitting field and its degree over $\Q$ of the polynomial \[x^4+x^2+1.\] Hint. The polynomial $x^4+x^2+1$ is not irreducible over $\Q$. Proof. Note that we can factor the polynomial as […]
  • $x^3-\sqrt{2}$ is Irreducible Over the Field $\Q(\sqrt{2})$$x^3-\sqrt{2}$ is Irreducible Over the Field $\Q(\sqrt{2})$ Show that the polynomial $x^3-\sqrt{2}$ is irreducible over the field $\Q(\sqrt{2})$.   Hint. Consider the field extensions $\Q(\sqrt{2})$ and $\Q(\sqrt[6]{2})$. Proof. Let $\sqrt[6]{2}$ denote the positive real $6$-th root of of $2$. Then since $x^6-2$ is […]
  • Automorphism Group of $\Q(\sqrt[3]{2})$ Over $\Q$.Automorphism Group of $\Q(\sqrt[3]{2})$ Over $\Q$. Determine the automorphism group of $\Q(\sqrt[3]{2})$ over $\Q$. Proof. Let $\sigma \in \Aut(\Q(\sqrt[3]{2}/\Q)$ be an automorphism of $\Q(\sqrt[3]{2})$ over $\Q$. Then $\sigma$ is determined by the value $\sigma(\sqrt[3]{2})$ since any element $\alpha$ of $\Q(\sqrt[3]{2})$ […]
  • The Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of UnityThe Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of Unity Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.   Hint. Consider the field extension $\Q(\sqrt[p]{2}, \zeta)$, where $\zeta$ is a primitive $p$-th root of […]
  • Two Quadratic Fields $\Q(\sqrt{2})$ and $\Q(\sqrt{3})$ are Not IsomorphicTwo Quadratic Fields $\Q(\sqrt{2})$ and $\Q(\sqrt{3})$ are Not Isomorphic Prove that the quadratic fields $\Q(\sqrt{2})$ and $\Q(\sqrt{3})$ are not isomorphic.   Hint. Note that any homomorphism between fields over $\Q$ fixes $\Q$ pointwise. Proof. Assume that there is an isomorphism $\phi:\Q(\sqrt{2}) \to \Q(\sqrt{3})$. Let […]
  • Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$ Prove that the cubic polynomial $x^3-2$ is irreducible over the field $\Q(i)$.   Proof. Note that the polynomial $x^3-2$ is irreducible over $\Q$ by Eisenstein's criterion (with prime $p=2$). This implies that if $\alpha$ is any root of $x^3-2$, then the […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Field Theory
Problems and Solutions in Field Theory in Abstract Algebra
Polynomial $x^p-x+a$ is Irreducible and Separable Over a Finite Field

Let $p\in \Z$ be a prime number and let $\F_p$ be the field of $p$ elements. For any nonzero element...

Close