Give a Formula For a Linear Transformation From $\R^2$ to $\R^3$

Linear Transformation problems and solutions

Problem 339

Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of the vector space $\R^2$, where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
1
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
1 \\
-1
\end{bmatrix}.\] The action of a linear transformation $T:\R^2\to \R^3$ on the basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given by
\begin{align*}
T(\mathbf{v}_1)=\begin{bmatrix}
2 \\
4 \\
6
\end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
0 \\
8 \\
10
\end{bmatrix}.
\end{align*}

Find the formula of $T(\mathbf{x})$, where
\[\mathbf{x}=\begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2.\]

 
LoadingAdd to solve later

Sponsored Links


Solution.

We give two solutions.

Solution 1 (linear combination)

Since we know the values of $T$ on the basis vectors $\mathbf{v}_1, \mathbf{v}_2$, if we express the vector $\mathbf{x}$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$, we can find $F(\mathbf{x})$ by the linearity of the linear transformation $T$.

So let us find the scalars $c_1, c_2$ such that
\[\mathbf{x}=c_1\mathbf{v}_1+c_2\mathbf{v}_2.\] We write this as
\begin{align*}
\begin{bmatrix}
x \\
y
\end{bmatrix}=c_1\begin{bmatrix}
1 \\
1
\end{bmatrix}+c_2\begin{bmatrix}
1 \\
-1
\end{bmatrix}
=
\begin{bmatrix}
1 & 1\\
1& -1
\end{bmatrix}\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}.
\end{align*}

The matrix $\begin{bmatrix}
1 & 1\\
1& -1
\end{bmatrix}$ is invertible (as its determinant is $-2$) and its inverse matrix is
\[\begin{bmatrix}
1 & 1\\
1& -1
\end{bmatrix}^{-1}=\frac{1}{2}\begin{bmatrix}
1 & 1\\
1& -1
\end{bmatrix}.\]

Thus, we have
\begin{align*}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}&=\begin{bmatrix}
1 & 1\\
1& -1
\end{bmatrix}^{-1}\begin{bmatrix}
x \\
y
\end{bmatrix}\\[6pt] &=\frac{1}{2}\begin{bmatrix}
1 & 1\\
1& -1
\end{bmatrix}\begin{bmatrix}
x \\
y
\end{bmatrix}\\[6pt] &=\frac{1}{2}\begin{bmatrix}
x+y \\
x-y
\end{bmatrix}
\end{align*}
Therefore, we obtain the linear combination
\[\mathbf{x}=\frac{1}{2}(x+y)\mathbf{v}_1+\frac{1}{2}(x-y)\mathbf{v}_2.\]

Now we compute $T(\mathbf{x})$ as follows.
We have
\begin{align*}
T(\mathbf{x})&=T\left(\frac{1}{2}(x+y)\mathbf{v}_1+\frac{1}{2}(x-y)\mathbf{v}_2 \right)\\[6pt] &=\frac{1}{2}(x+y)T(\mathbf{v}_1)+\frac{1}{2}(x-y)T(\mathbf{v}_2) && \text{by linearity of $T$}\\[6pt] &=\frac{1}{2}(x+y)\begin{bmatrix}
2 \\
4 \\
6
\end{bmatrix}+\frac{1}{2}(x-y)\begin{bmatrix}
0 \\
8 \\
10
\end{bmatrix} \\[6pt] &=\begin{bmatrix}
x+y \\
6x-2y \\
8x-2y
\end{bmatrix}.
\end{align*}
Hence the formula is
\[T(\mathbf{x})=\begin{bmatrix}
x+y \\
6x-2y \\
8x-2y
\end{bmatrix}.
\]

Solution 2 (Matrix representation)

In the second solution, we use the matrix representation for the linear transformation $T$.
Let $A$ be the matrix of $T$ with respect to the standard basis $\{\begin{bmatrix}
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
1
\end{bmatrix}\}$ of $\R^2$.
Thus, we have $T(\mathbf{x})=A\mathbf{x}$ by definition.

To find the matrix $A$, we compute
\begin{align*}
A\begin{bmatrix}
1 & 1\\
1& -1
\end{bmatrix}&=A\begin{bmatrix}
\mathbf{v}_1 & \mathbf{v}_2 \\
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
A\mathbf{v}_1 & A\mathbf{v}_2
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
2 & 0 \\
4 & 8 \\
6 &10
\end{bmatrix}
\end{align*}
It follows that we have
\begin{align*}
A&=\begin{bmatrix}
2 & 0 \\
4 & 8 \\
6 &10
\end{bmatrix}\begin{bmatrix}
1 & 1\\
1& -1
\end{bmatrix}^{-1}\\[6pt] &=\begin{bmatrix}
2 & 0 \\
4 & 8 \\
6 &10
\end{bmatrix}\frac{1}{2}\begin{bmatrix}
1 & 1\\
1& -1
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
1 & 1 \\
6 & -2 \\
8 &-2
\end{bmatrix}.
\end{align*}

We now be able to find $T(\mathbf{x})$ as follows.
We have
\begin{align*}
T(\mathbf{x})&=A\mathbf{x}\\[6pt] &=\begin{bmatrix}
1 & 1 \\
6 & -2 \\
8 &-2
\end{bmatrix}\begin{bmatrix}
x \\
y
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
x+y \\
6x-2y \\
8x-2y
\end{bmatrix},
\end{align*}
which is, of course, the same formula that we obtained in solution 1.

Related Question.

A similar problem for a linear transformation from $\R^3$ to $\R^3$ is given in the post “Determine linear transformation using matrix representation“.

Instead of finding the inverse matrix in solution 1, we could have used the Gauss-Jordan elimination to find the coefficients.
See the post “Give a formula for a linear transformation if the values on basis vectors are known” for a similar problem and its solution using this alternative method.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

3 Responses

  1. 03/16/2017

    […] the post “Give a formula for a linear transformation from $R^2$ to $R^3$” for a similar problem. Two solutions are given. One uses the inverse matrix and the other […]

  2. 03/16/2017

    […] A similar problem with a linear transformation from $R^2$ to $R^3$ is given in the post “Give a formula for a linear transformation from $R^2$ to $R^3$“. […]

  3. 03/26/2017

    […] Give a formula for a linear transformation from […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
12 Examples of Subsets that Are Not Subspaces of Vector Spaces

Each of the following sets are not a subspace of the specified vector space. For each set, give a reason...

Close