Group Homomorphism, Preimage, and Product of Groups

Group Theory Problems and Solutions in Mathematics

Problem 208

Let $G, G’$ be groups and let $f:G \to G’$ be a group homomorphism.
Put $N=\ker(f)$. Then show that we have
\[f^{-1}(f(H))=HN.\]

 
LoadingAdd to solve later

Sponsored Links

Proof.

$(\subset)$ Take an arbitrary element $g\in f^{-1}(f(H))$. Then we have $f(g)\in f(H)$.
It follows that there exists $h\in H$ such that $f(g)=f(h)$.
Since $f$ is a group homomorphism, we obtain
\[f(h^{-1}g)=e’,\] where $e’$ is the identity element of the group $G’$.

This implies that $h^{-1}g\in \ker(f)=N$, hence we have
\begin{align*}
g\in hN\subset HN.
\end{align*}
Therefore we have $f^{-1}(f(H)) \subset HN$.


$(\supset)$ On the other hand, let $g\in HN$ be an arbitrary element.
Then we can write $g=hn$ with $h \in H$ and $n\in N$.
We have
\begin{align*}
f(g)&=f(hn)=f(h)f(n)\\
&=f(h)e’=f(h)\in f(H)
\end{align*}
since $f$ is a group homomorphism and $f(n)=e’$.
Thus we have
\[g\in f^{-1}(f(H))\] and $f^{-1}(f(H)) \supset HN$.


Therefore, putting the two continents together gives
\[f^{-1}(f(H))=HN\] as required.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Surjective Group Homomorphism to $\Z$ and Direct Product of Abelian GroupsSurjective Group Homomorphism to $\Z$ and Direct Product of Abelian Groups Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism. Prove that we have an isomorphism of groups: \[G \cong \ker(f)\times \Z.\]   Proof. Since $f:G\to \Z$ is surjective, there exists an element $a\in G$ such […]
  • Group Homomorphisms From Group of Order 21 to Group of Order 49Group Homomorphisms From Group of Order 21 to Group of Order 49 Let $G$ be a finite group of order $21$ and let $K$ be a finite group of order $49$. Suppose that $G$ does not have a normal subgroup of order $3$. Then determine all group homomorphisms from $G$ to $K$.   Proof. Let $e$ be the identity element of the group […]
  • Subgroup of Finite Index Contains a Normal Subgroup of Finite IndexSubgroup of Finite Index Contains a Normal Subgroup of Finite Index Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$.   Proof. The group $G$ acts on the set of left cosets $G/H$ by left multiplication. Hence […]
  • A Group Homomorphism is Injective if and only if MonicA Group Homomorphism is Injective if and only if Monic Let $f:G\to G'$ be a group homomorphism. We say that $f$ is monic whenever we have $fg_1=fg_2$, where $g_1:K\to G$ and $g_2:K \to G$ are group homomorphisms for some group $K$, we have $g_1=g_2$. Then prove that a group homomorphism $f: G \to G'$ is injective if and only if it is […]
  • The Preimage of a Normal Subgroup Under a Group Homomorphism is NormalThe Preimage of a Normal Subgroup Under a Group Homomorphism is Normal Let $G$ and $G'$ be groups and let $f:G \to G'$ be a group homomorphism. If $H'$ is a normal subgroup of the group $G'$, then show that $H=f^{-1}(H')$ is a normal subgroup of the group $G$.   Proof. We prove that $H$ is normal in $G$. (The fact that $H$ is a subgroup […]
  • Abelian Normal subgroup, Quotient Group, and Automorphism GroupAbelian Normal subgroup, Quotient Group, and Automorphism Group Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$. Let $\Aut(N)$ be the group of automorphisms of $G$. Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime. Then prove that $N$ is contained in the center of […]
  • Group of $p$-Power Roots of 1 is Isomorphic to a Proper Quotient of ItselfGroup of $p$-Power Roots of 1 is Isomorphic to a Proper Quotient of Itself Let $p$ be a prime number. Let \[G=\{z\in \C \mid z^{p^n}=1\} \] be the group of $p$-power roots of $1$ in $\C$. Show that the map $\Psi:G\to G$ mapping $z$ to $z^p$ is a surjective homomorphism. Also deduce from this that $G$ is isomorphic to a proper quotient of $G$ […]
  • A Group Homomorphism that Factors though Another GroupA Group Homomorphism that Factors though Another Group Let $G, H, K$ be groups. Let $f:G\to K$ be a group homomorphism and let $\pi:G\to H$ be a surjective group homomorphism such that the kernel of $\pi$ is included in the kernel of $f$: $\ker(\pi) \subset \ker(f)$. Define a map $\bar{f}:H\to K$ as follows. For each […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Abelian Group problems and solutions
A Group Homomorphism and an Abelian Group

Let $G$ be a group. Define a map $f:G \to G$ by sending each element $g \in G$ to its...

Close